Posters A:
ID 05: Contrastive Learning of Medical Visual Representations from Paired Images and Text
Zhang, Yuhao; Jiang, Hang; Miura, Yasuhide; Manning, Christopher D; Langlotz, Curtis
ID 15: Unified Auto Clinical Scoring (Uni-ACS) with Interpretable ML models
Li, Anthony; Ong, Ming Lun; Oei, Chien Wei; Lian, Weixiang; Phua, Hwee Pin; Htet, Lin Htun; Lim, Wei Yen; Motani, Mehul
ID 20: Deep Cascade Learning for Optimal Medical Image Feature Representation
Wang, Junwen; Du, Xin; Farrahi, Katayoun; Niranjan, Mahesan
ID 24: Survival Seq2Seq: A Survival Model based on Sequence to Sequence Architecture
Pourjafari, Ebrahim; Ziaei, Navid; Rezaei, Mohammad R.; Sameizadeh, Amir; Shafiee, Mohammad; Alavinia, Mohammad; Abolghasemian, Mansour; Sajadi, Nick
ID 28: Density-Aware Personalized Training for Risk Prediction in Imbalanced Medical Data
Huo, Zepeng; Qian, Xiaoning ; Huang, Shuai; Wang, Zhangyang; Mortazavi, Bobak J
ID 32: Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis
Schamoni, Shigehiko; Hagmann, Michael; Riezler, Stefan
ID 34: Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in Medicine
Persson, Joel; Feuerriegel, Stefan; Blümlein, Theresa
ID 36: GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for Robust Electrocardiogram Prediction
Zhu, Jiacheng; Qiu, Jielin; Yang, Zhuolin; Weber, Douglas J; Rosenberg, Michael; Liu, Emerson; Li, Bo; ZHAO, DING
ID 37: HiCu: Leveraging Hierarchy for Curriculum Learning in Automated ICD Coding
Ren, Weiming; Zeng, Ruijing; Wu, Tongzi; Zhu, Tianshu; Krishnan, Rahul G.
ID 38: Survival Mixture Density Networks
Han, Xintian; Goldstein, Mark; Ranganath, Rajesh
ID 41: Latent Temporal Flows for Multivariate Analysis of Wearables Data
Amiridi, Magda; Darnell, Gregory; Jewell, Sean
ID 43: An hybrid CNN-Transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification
Vindas Yassine, Yamil E; Guépié, Blaise Kévin; Almar, Marilys; Roux, Emmanuel; Delachartre, Philippe
ID 49: EMIXER: End-to-end Multimodal X-ray Generation via Self-supervision
Biswal, Siddharth; Zhuang, Peiye; Pyrros, Ayis; Siddiqui, Nasir; Koyejo, Sanmi; Sun, Jimeng
ID 50: Diagnosing Epileptogenesis with Deep Anomaly Detection
Farahat, Amr; Lu, Diyuan; Bauer, Sebastian; Neubert, Valentin; Costard, Lara; Rosenow, Felix; Triesch, Jochen
ID 51: Disparate Censorship & Undertesting: A Source of Label Bias in Clinical Machine Learning
Chang, Trenton; Sjoding, Michael; Wiens, Jenna
ID 53: EHR Safari: Data is Contextual
Boag, Willie; Oladipo, Mercy; Szolovits, Peter
ID 57: A Multi Instance Learning Approach for Critical View of Safety Detection in Laparoscopic Cholecystectomy
Colbeci, Yariv; Zohar, Maya; Neimark, Daniel; Asselmann, Dotan; Bar, Omri
ID 59: Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models
Ryser, Alain; Manduchi, Laura; Laumer, Fabian; Michel, Holger ; Wellmann, Sven; Vogt, Julia
ID 61: How fair is your graph? Exploring fairness concerns in neuroimaging studies
Ribeiro, Fernanda L; Shumovskaia, Valentina; Davies, Thomas O M; Ktena, Ira
ID 64: MedFuse: Multi-modal fusion with clinical time-series data and chest X-ray images
Hayat, Nasir; Geras, Krzysztof J; Shamout, Farah E
ID 65: Debiasing Deep Chest X-Ray Classifiers using Intra- and Post-processing Methods
Marcinkevičs, Ričards; Ozkan, Ece; Vogt, Julia
ID 80: ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary Differential Equations
Alaa, Asem; Mayer, Erik; Barahona, Mauricio
ID 83: Weakly Supervised Deep Instance Nuclei Detection using Points Annotation in 3D Cardiovascular Immunofluorescent Images
Moradinasab, Nazanin; Sharma, Yash; Shankman, Laura; Owens, Gary; Brown, Donald
Posters B:
ID 84: auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data
Nagpal, Chirag; Potosnak, Willa; Dubrawski, Artur
ID 86: AudiFace: Multimodal Deep Learning for Depression Screening
Flores, Ricardo; Tlachac, ML; Toto, Ermal; Rundensteiner, Elke A
ID 93: Reinforcement Learning For Sepsis Treatment: A Continuous Action Space Solution
Huang, Yong; Cao, Rui; Rahmani, Amir
ID 104: Learning Optimal Summaries of Clinical Time-series with Concept Bottleneck Models
Wu, Carissa; Parbhoo, Sonali; Havasi, Marton; Doshi-Velez, Finale
ID 114: Classifying Unstructured Clinical Notes via Automatic Weak Supervision
Gao, Chufan; Goswami, Mononito; Chen, Jieshi; Dubrawski, Artur
ID 118: KCRL: A Prior Knowledge Based Causal Discovery Framework With Reinforcement Learning
Hasan, Uzma; Gani, Md Osman
ID 119: Error Amplification When Updating Deployed Machine Learning Models
Adam, George A; Chang, Chun-Hao; Haibe-Kains, Benjamin; Goldenberg, Anna
ID 121: Development and Validation of ML-DQA – a Machine Learning Data Quality Assurance Framework for Healthcare
Mark Sendak, Gaurav Sirdeshmukh, Timothy Ochoa, Hayley Premo, Linda Tang, Kira Niederhoffer, Sarah Reed, Kaivalya Deshpande, Emily Sterrett, Melissa Bauer, Laurie Snyder, Afreen Shariff, David Whellan, Jeffrey Riggio, David Gaieski, Kristin Corey, Megan Richards, Michael Gao, Marshall Nichols, Bradley Heintze, William Knechtle, William Ratliff, Suresh Balu
ID 126: Reducing Reliance on Spurious Features in Medical Image Classification with Spatial Specificity
Saab, Khaled K; Hooper, Sarah; Chen, Mayee; Zhang, Michael; Rubin, Daniel; Re, Christopher
ID 128: Searching for Fine-Grained Queries in Radiology Reports Using Similarity-Preserving Contrastive Embedding
Syeda-Mahmood, Tanveer; Shi, Luyao
ID 129: SurvLatent ODE : A Neural ODE based time-to-event model with competing risks for longitudinal data improves cancer-associated Venous Thromboembolism (VTE) prediction
Moon, Intae; Groha, Stefan; Gusev, Alexander
ID 130: Why predicting risk can’t identify ‘risk factors’: empirical assessment of model stability in machine learning across observational health databases
Markus, Aniek; Rijnbeek, Peter; Reps, Jenna M
ID 131: Few-Shot Learning with Semi-Supervised Transformers for Electronic Health Records
Poulain, Raphael; Gupta, Mehak; Beheshti, Rahmatollah
ID 135: Evaluating Uncertainty-Based Deep Learning Explanations for Prostate Lesion Detection
Trombley, Christopher M; Gulum, Mehmet A; Ozen, Merve; Aksamoglu, Melih; Esen, Enes; Kantardzic, Mehmed
ID 139: ALGES: Active Learning with Gradient Embeddings for Semantic Segmentation of Laparoscopic Surgical Images
Aklilu, Josiah; Yeung, Serena
Posters C (Clinical Abstracts):
ID 7: A machine learning approach to diagnose blood diseases
Luchinin, Alexander; Kolupaev, Oleg
ID 8: A logistic regression-based model to predict ICU mortality: problems and solutions
Luchinin, Alexander; Kolupaev, Oleg; Lyanguzov, Alexey
ID 16: Learning from failure: Explaining clinical ML model prediction errors
Li, Anthony; Huang, Zhilian; Oei, Chien Wei; Lian, Weixiang; Zhang, Xiaojin; Phua, Hwee Pin; Ng, Wei Xiang; Tay, Seow Yian
ID 17: Structured Understanding of Assessment and Plans in Clinical Documentation
Stupp, Doron; Barequet, Ronnie; Lee, I-Ching; Feder, Amir; Oren, Eyal; Benjamini, Ayelet; Hasidim, Avinatan; Matias, Yossi; Ofek, Eran; Rajkomar, Alvin
ID 18: PyMSM: Python package for Competing Risks and Multi-state models for Survival Data
Rossman, Hagai; Keshet, Ayya; Gorfine, Malka
ID 30: PyDTS: A Python Package for Discrete Time Survival Analysis with Competing Risks
Meir, Tomer; Gutman, Rom; Gorfine, Malka
ID 33: Temporal Patterns of Primary Care Utilization as Predictors for ICU Admission
Post, Benjamin JS; Brett, Stephen; Faisal, Aldo
ID 39: Utilizing a machine learning mortality model to increase serious illness conversations in hospitalized patients: A cluster randomized controlled trial
Ma, Jessica; Gao, Michael; Walter, Jonathan; Acker, Yvonne; Setji, Noppon; Olsen, Maren; Sendak, Mark; Balu, Suresh; Casarett, David
ID 40: Implementation of a machine learning algorithm to enhance primary care effectiveness and equity for peripheral arterial disease: a qualitative study
Wang, Sabrina; Hogg, Jeffry; Sangvai, Devdutta; Patel, Manesh; Kellogg, Kate; Balu, Suresh; Sendak, Mark
ID 42: Impact of AI dose suggestions on the prescriptions of ICU doctors
Nagendran, Myura; Gordon, Anthony; Faisal, Aldo
ID 48: CyclOps: A unified framework for data extraction and rigorous evaluation of ML models for clinical use-cases
Subasri, Vallijah; Krishnan, Amrit; Mckeen, Kaden; Dolatabadi, Elham
ID 63: Improving Equity and Value of Peripheral Artery Disease Care at a Population Level
Shen, Rebecca; Weissler, Elizabeth H; Ratliff, William; Hintze, Bradley; Nichols, Marshall; Gao, Michael; Cohen, Pam; Alvarado, Holly; Sendak, Mark; Balu, Suresh; Jones, Schuyler
ID 71: Development and validation of a convolutional neural network to identify regions of interest in lumpectomy margins using optical coherence tomography
Krishnamurthy, Savitri; Rempel, David; Berkeley, Andrew; Nagi, Chandandeep; Pekar, Vladimir; Burns, Margaret; Rabindran, Beryl; Nazarullah, Alia; Jatoi, Ismail; Hunt, Kelly; Thompson, Alastair
ID 73: Integration of a Post-operative Opioid Calculator into an Academic Gynecologic Surgery Practice
Zanolli, Nicole C; Knechtle, William; Sendak, Mark; Havrilesky, Laura; Davidson, Brittany
ID 78: Algorithm Development for Duke Emergency Pre-hospital Capacity Management
Shen, Rebecca; Ratliff, William; Knechtle, William; Joiner, Anjni; Godfrey, Andrew; Boyd, Joshua; Theiling, Jason; Kapadia, Neel; Sendak, Mark; Balu, Suresh; Burrows, Brian
ID 81: Development of a Machine Learning Model for Early Detection of Pediatric Sepsis
Tang, Linda Y; Ratliff, William; Sendak, Mark; Gao, Michael; Nichols, Marshall; Yashar, Faraz; Balu, Suresh; Subramanian, Neel; Uhl, Tammy; Denis, Liset; Sterrett, Emily
ID 82: A Geriatric-Specific Morbidity and Mortality Risk Stratification Tool
Premo, Hayley; Knechtle, William; Shi, Harvey; Sendak, Mark; Nichols, Marshall; Gao, Michael; Hintze, Bradley; Balu, Suresh; Rachakonda, Sai; McDonald, Shelley; Blitz, Jeanna; Lagoo-Deenadayalan, Sandhya; Kazaure, Hadiza
ID 85: Creating an evidence standards framework for artificial intelligence enabled digital health technologies
Macdonald, Trystan; Sounderajah, Viknesh; Unsworth, Harriet; Wolfram, Verena; Dillon, Bernice; Salmon, Mark; Liu, Xiao; Denniston, Alastair; Ashrafian, Hutan; Ashurst, Carolyn; Darzi, Ara; Holmes, Chris; Weller, Adrian
ID 90: STANDING Together: STANdards for Data Diversity, Inclusivity and Generalisability
Alderman, Joseph E; Palmer, Jo; Sebire, Neil; Ghassemi, Marzyeh; Calvert, Melanie; McCradden, Melissa; Kuku, Stephanie; Matin, Rubeta; Manohar, Sinduja; Espinosa, Cyrus; Gath, Jacqui; Denniston, Alastair; Liu, Xiaoxuan
ID 91: The Medical Algorithmic Audit: a protocol for safety monitoring of a skin cancer detection artificial intelligence health technology
Kale, Aditya U; Liu, Xiao; Denniston, Alastair
ID 92: Med-BERT v2: clinical foundation model on standardized secondary clinical data
Rasmy, Laila; Zhi, Degui
ID 94: A machine learning-based approach to classifying a provider’s description of chest pain
Donath, Elie; Cheney, Nicholas; Li, Yao
ID 100: Patient and Room Activity Video Summary (PRAVS) in the ICU: Rapidly Interpretable, ML-Generated Clinical Video Summaries of the Overnight Period
Parker, Samantha; Gilstrap, Daniel ; Bedoya, Armando; Lee, Patty; Gabriel, Paolo; Urbisci, Laura; Hu, Dewei; Troy, Tyler; Hata, Tom; Singh, Narinder; Choma, Michael
ID 101: Predicting Hospital Admissions and Emergency Department Visits in Patients Receiving Immune Checkpoint Inhibitors
Niederhoffer, Kira; Knechtle, William; Ratliff, William; Sendak, Mark; Gao, Michael; Nichols, Marshall; Hintze, Bradley; Revoir, Mike; Diamond, Carrie; Zafar, Yousuf; Clarke, Jeffrey; Uronis, Hope; Balu, Suresh; Shariff, Afreen
ID 105: EHR phenotyping by Natural Language Processing improves detection of patients at risk for preeclampsia
Wong, Melissa S; Wells, Matthew; Parrinella, Kristin; Gregory, Kimberly
ID 108: Phenotype Development and Validation for a Maternal Early Warning System
Richards, Megan E
ID 109: Single-Cell Phenotyping Using Optical Imaging and Artificial Intelligence
Bhattacharya, Abhishek; Hollon, Todd C; Alber, Daniel
ID 111: Development of a Machine Learning Model for Prediction of Mortality in Lung Transplant Patients
Ochoa, Timothy N; Knechtle, William; Sendak, Mark; Ratliff, William; Gao, Michael; Balu, Suresh; Deshpande, Kaivalya; Klapper, Jacob; Bottiger, Brandi; Snyder, Laurie; Hartwig, Matthew
ID 112: Transparent and Distributed AI Prediction Modeling for Predicting Severity of Pediatric Covid
Suarez Saiz, Fernando; Dey, Sanjoy; Chakraborty, Prithwish; Ghalwash, Mohamed; meyer, pablo
ID 116: Predictive models for clopidogrel outcome using prescription records and diagnosis codes
Lee, In Gu; Kim, Samuel; Ban, Mijeong; Kim, Min; Chiang, Jane
ID 132: Drug repurposing of metformin for Alzheimer’s disease: Causal inference in medical records and complementary systems pharmacology for biomarker identification
Albers, Mark; Charpignon, Marie-Laure; Vakulenko-Lagun, Bella; Zheng, Bang; Magdamo, Colin; Su, Bowen; Rodriguez, Steve; Sokolov, Artem; Boswell, Sarah; Sheu, Yi-Han; Somai, Melek; Betensky, Rebecca; Middleton, Lefkos; Hyman, Bradley; Finkelstein, Stan; Welsch, Roy; Tzoulaki, Ioanna; Blacker, Deborah; Das, Sudeshna
ID 134: Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review
Celi, Leo; Cellini, Jacqueline; Charpignon, Marie-Laure; Dee, Edward; Dernoncourt, Franck; Eber, Rene; Mitchell, William; Moukheiber, Lama; Schirmer, Julian; Situ, Julia; Paguio, Joseph; Park, Joel; Gichoya, Judy W; Yao, Seth
ID 138: Neurosurgical Ethomics: Using Machine Learning to Decode the Language of Neurosurgery
Nimer, Amr