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Abstract

There are several opportunities for automation in healthcare that can improve clinician
throughput. One such example is assistive tools to document diagnosis codes when clini-
cians write notes. We study the automation of medical code prediction using curriculum
learning, which is a training strategy for machine learning models that gradually increases
the hardness of the learning tasks from easy to difficult. One of the challenges in curriculum
learning is the design of curricula – i.e., in the sequential design of tasks that gradually
increase in difficulty. We propose Hierarchical Curriculum Learning (HiCu), an algorithm
that uses graph structure in the space of outputs to design curricula for multi-label classifi-
cation. We create curricula for multi-label classification models that predict ICD diagnosis
and procedure codes from natural language descriptions of patients. By leveraging the
hierarchy of ICD codes, which groups diagnosis codes based on various organ systems in
the human body, we find that our proposed curricula improve the generalization of neu-
ral network-based predictive models across recurrent, convolutional, and transformer-based
architectures. Our code is available at https://github.com/wren93/HiCu-ICD.

1. Introduction

The prediction of multiple labels from an input occurs in various problems in machine
learning. These can include the prediction of multiple clinical pathologies in a chest x-ray
(Wang et al., 2017), the identification of named entities in biomedical text (Doğan et al.,
2014), and, as we study here, the prediction of diagnosis codes from clinical notes (Johnson
et al., 2016). Multi-label classification can be challenging since the accurate prediction of
multiple labels requires the ability to effectively learn different decision boundaries (that
may depend on different combinations of overlapping features) for each label. Furthermore,
when the label space is large, models may focus on accurately predicting commonly observed
labels at the expense of rare labels.

We study the automation of predicting medical diagnosis codes from clinical notes. We
focus on International Classification of Diseases (ICD) coding, a multi-label classification
task. ICD codes are used in healthcare systems to record the diagnoses and procedures dur-
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ing patient stays in medical institutions. After the patient is discharged from the hospital,
it is common to assign ICD codes based on the discharge summaries to the patient’s profiles,
such as electronic health records (EHR). This task is useful for a variety of purposes such as
medical research, epidemiological studies, and billing1. Traditionally, this task is often done
by professional clinical coders but is time-consuming and error-prone. Training professional
coders is time and labor-intensive. Research such as ours can improve automated ICD cod-
ing. One immediate use case is to assist hospital administrators in automating coding from
clinical notes. A more long-term use case we envision is that such models may be deployed
in auto-complete software that tags the relevant ICD code while the care provider is writing
in the original note. Such tools can go a long way toward reducing costs for patients and
providers. By reducing clinician time spent on administrative tasks, such automation can
help clinicians spend more on patient care and consequently assist in reducing burnout.

Recent work for this problem has focused on developing new neural architectures for
this task. However, this is a challenging learning problem – existing approaches typically
treat each label as an independent prediction problem (Tsoumakas and Katakis, 2007) and
can underperform in the prediction of less frequently observed diagnosis codes. A critical
limitation to many deep learning approaches to this problem has been that they ignore the
structure inherent among the different labels. This structure may already exist among the
labels or, optionally, can be extracted by querying domain experts. ICD codes, for example,
are organized hierarchically. Our focus in this work is to leverage the structure among labels
to simplify the learning problem.

When tackling challenging learning problems, an effective strategy can be to leverage
curriculum learning (CL) (Bengio et al., 2009). Instead of solving a single learning problem,
CL posits that we may improve a model’s generalization by training it iteratively using a
curriculum – first on simple problems and then on more challenging ones. Using CL requires
knowing what constitutes good curricula, a complex problem in and of itself.

In this work, we tackle the challenges of multi-label classification using curriculum learn-
ing and experiment on the MIMIC-III v1.4 dataset with ICD-9 codes, which is the primary
benchmark dataset for ICD coding classification. Our first insight is that the decision
boundaries for different ICD codes are not independent. Instead, ICD codes are organized
in a tree structure which defines a notion of similarity, i.e. dissimilar labels will have differ-
ent ancestors in the tree and vice versa. In addition, the specificity of codes increases the
further down we go into each sub-tree. Next, we note that ICD codes in a population follow
a power-law distribution – this means the labels tend to be imbalanced with a few handfuls
of commonly used codes and a long tail of rare codes. Our second insight is that the ex-
plicit incorporation of techniques to handle label imbalance is essential to ensure parity of
performance of predictive models on both rare and frequent labels. The main contributions
of this paper are as follows:

1. We propose a novel Hierarchical Curriculum learning algorithm HiCu (see Figure 1)
to learn multi-label classifiers when labels exhibit a hierarchical structure. HiCu
creates a curriculum for learning based on a depth-wise decomposition of the label
graph and a hyperbolic-embedding-based knowledge transfer mechanism to warm start
representations from one step of curriculum learning to the next. We incorporate an

1. https://en.wikipedia.org/wiki/Clinical_coder
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asymmetric loss function into our model to deal with the highly imbalanced label
distribution to help balance the performance on both frequent and rare labels.

2. We thoroughly evaluate the algorithm with ablation studies to quantify the impact
of each of our contributions and show that HiCu dramatically improves multi-label
predictive performance on ICD code prediction across recurrent, convolutional, and
transformer-based neural architectures.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work provides a method to leverage curriculum learning for multi-label classification
tasks where the label space is structured. Specifically, we consider label spaces that are
structured as a hierarchy, a directed graph where the specificity of the label increases with
depth in the graph. A practical ramification of using this structure is that the resulting
method improves predictive performance on less frequently occurring (and consequently
harder to detect) labels. We instantiate our algorithm for automating the prediction of
ICD codes helping accelerate the development of automated solutions to identify diagnosis
codes from clinical notes such as discharge summaries. For a fair comparison to previous
work, we run thorough experiments with standard benchmarks using ICD-9 codes and a
variety of different neural architectures. Since the hierarchy of the ICD-10 codes is similar
to the ICD-9 hierarchy, we anticipate our algorithm, HiCu, to continue to perform well in
that domain.

The idea behind our work may be extended to other multi-label classification problems
with structure among the labels. One such example is OncoTree, a tree-based ontology of
868 tumor types across 32 organ sites. An interesting new application of HiCu that would
be fertile ground for future work would be to leverage hierarchical ontologies to regularize
representations in predictive tasks. For example, with OncoTree, one could help improve
predictive models of cancer severity from histopathological tissue samples while leveraging
the hierarchy to predict tumor type as a form of regularization.

2. Related Work

Curriculum Learning: The design of algorithms has often been inspired by human learn-
ing. Human education is organized sequentially, starting with simple concepts, which are
composed to form more sophisticated concepts (Wang et al., 2021). In a similar vein, Bengio
et al. (2009) proposed curriculum learning (CL) for learning models. Typically curriculum
learning (Elman, 1993) breaks up the training data into subsets and learns the model first
on the easier sets of data and then on the harder ones. CL has been used in computer vision
(CV) (Guo et al., 2018; Jiang et al., 2014), natural language processing (NLP) (Platanios
et al., 2019; Tay et al., 2019), and various reinforcement learning (RL) tasks (Florensa et al.,
2017; Narvekar et al., 2017; Ren et al., 2018). In the context of healthcare, (El-Bouri et al.,
2020) designs a student-teacher framework where a model adaptively creates curricula by
sub-selecting the next set of inputs for a student network to be trained on. CL often results
in a faster convergence rate during training and improved generalization. Platanios et al.
(2019) employed CL to aid a neural machine translation model and cut training time by
up to 70%. Florensa et al. (2017) used CL to help RL agents answer difficult goal-oriented
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Figure 1: Hierarchical Curriculum Learning (HiCu): Illustration of the overall encoder-
decoder architecture and the hierarchical curriculum learning algorithm of our ICD coding
model. The numbers indicate the sequential execution order of our training algorithm:
the model is first trained on labels at the first level of the label tree using level one
decoder, and then proceeds to level two using the knowledge transfer mechanism. This
process is repeated until the model reaches the final level in the label tree. During train-
ing at each level, the hyperbolic embeddings of the ICD codes are used to guide the
attention computation in the decoder.

problems that they couldn’t handle without the help of curriculum. Our work differs from
existing work in a few ways. We define curricula, not over the set of inputs that a model
is trained with at each step but rather the span of labels the model has to predict. Next,
we leverage privileged-information Vapnik et al. (2015) (information available at training
time but not at test time) in the design of curricula resulting in improvements in the model
generalization that we examine both quantitatively and qualitatively.

Hierarchical Knowledge & Hyperbolic Embedding: Some recent approaches have
successfully demonstrated the benefits of leveraging hierarchical knowledge for training
machine learning models. For example, Zhang et al. (2019) utilizes both large-scale tex-
tual corpora and knowledge graphs (KGs) to train an Enhanced Language Representation
with Informative Entities (ERNIE), which can take full advantage of lexical, syntactic, and
knowledge information simultaneously. Hyperbolic embeddings, a special case of hierar-
chical knowledge, have captured the attention of the machine learning community. The
motivation is to embed structured, discrete objects such as knowledge graphs into a contin-
uous representation that can be used with modern machine learning methods. Hyperbolic
embeddings can preserve graph distances and complex relationships in very few dimensions,
particularly for hierarchical graphs (Nickel and Kiela, 2017; Chamberlain et al., 2017).

For example, given a tree, Hyperbolic Embeddings for Entities (HyperE) (Sala et al.,
2018) used combinatorial construction that embeds the tree in hyperbolic space with arbi-
trarily low distortion without using optimization. HyperE offers excellent quality with few
dimensions when embedding hierarchical data structures like synonyms or type hierarchies.
Hyperbolic Attention Networks, proposed by Gulcehre et al. (2018), imposed hyperbolic
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geometry on the activations of neural networks. This allows the model to exploit hyper-
bolic geometry to reason about embeddings produced by deep networks. Hyperbolic and
Co-graph Representation for Automatic ICD Coding (HyperCore) (Cao et al., 2020) utilized
the idea of hyperbolic embeddings to improve the performance of automated ICD coding.
Their proposed model outperforms previous state-of-the-art methods by utilizing hyperbolic
embeddings to capture the code hierarchy.

Automated ICD coding: The automated ICD coding of clinical notes is an estab-
lished studied research topic (Perotte et al., 2014; Koopman et al., 2015; Karimi et al., 2017;
Shi et al., 2017; Mullenbach et al., 2018; Baumel et al., 2018; Li et al., 2018; Xie et al., 2019;
Huang et al., 2019; Chen et al., 2019; Li and Yu, 2020; Vu et al., 2020). Larkey and Croft
(1996) used an ensemble model combining KNN, relevance feedback, and Bayesian inde-
pendence classifiers to predict ICD-9 codes based on discharge summaries. de Lima et al.
(1998) utilized the cosine similarity between the medical discharge summary and the ICD
code description to build the classifier which assigns codes with the highest similarities to
the summary. Perotte et al. (2014) proposed a supervised machine learning model that used
SVM to perform automatic ICD coding on the MIMIC-II dataset.

Recently, this problem has been explored using tools from deep learning. Shi et al.
(2017) used character-level long short-term memory (LSTMs) to learn representations of
subsections from discharge summaries and the code description, followed by an attention
mechanism to address the mismatch between the subsections and corresponding codes.
Wang et al. (2018) proposed a joint embedding model, in which the labels and words are
embedded into the same vector space, and the cosine similarity between them is used to
predict the labels. (Baumel et al., 2018) proposed a hierarchical gated recurrent unit (GRU)
network for assigning multiple ICD codes to discharge summaries from the MIMIC II and
III datasets. For convolutional neural network (CNN) based methods, Mullenbach et al.
(2018) used a one-layer CNN in conjunction with a structured attention mechanism to
predict ICD-9 codes from multiple-labeled clinical notes. Xie et al. (2019) improved upon
the convolutional attention model (Mullenbach et al., 2018) by using densely connected
CNN and multi-scale feature attention. The convolutional attention model (Mullenbach
et al., 2018) was further improved again by Li and Yu (2020), who proposed a Multi-Filter
Residual CNN (MultiResCNN) for ICD coding. Vu et al. (2020) additionally proposed
a hierarchical joint learning mechanism extending their label attention model using the
hierarchical relationships among the codes. To handle the issue of label imbalance, Kim and
Ganapathi (2021) introduced the Read, Attend, and Code (RAC) model for learning ICD
code assignment mappings. Our work explores an orthogonal direction to the status quo.
Rather than devising a new neural architecture for this problem, we study the improvements
that may be realized through curriculum learning.

3. Methodology

Automatic ICD coding can be regarded as a multi-label classification problem (McCallum,
1999). Formally, assume we have a dataset {x,y}Di=1, where x ∈ RN denotes an input
discharge summary represented by word indices and y ∈ {0, 1}|C| denotes the set of binary
indicators of all the ICD codes; our goal is to train |C| binary classifiers, each predicting
the probability of assigning an ICD code to the input discharge summary. Our model, like
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others, is an encoder-decoder architecture (Mullenbach et al., 2018; Li and Yu, 2020). Given
an input discharge summary, the encoder creates feature representations for each word in
the input. The decoder then maps these representations onto ICD codes.

3.1. Encoder

Let x ∈ RN be the input word sequence represented by word indices, the encoder takes in
this input and outputs a word representation matrix H ∈ RN×df , where each row Hi ∈ Rdf

represents a feature vector of the word i. The goal of any encoder is to extract semantically
meaningful representations from the input word sequences. This can be any text feature
extractor such as CNN-based models (Mullenbach et al., 2018; Li and Yu, 2020), RNN-
based models (Vu et al., 2020) and transformer-based pre-trained language models (Pascual
et al., 2021). In this work, we study our method using three existing architectures, namely
Bi-LSTM (Vu et al., 2020), MultiResCNN (Li and Yu, 2020) and RAC reader (Kim and
Ganapathi, 2021), to directly compare our results with prior works. A detailed introduction
of these encoder architectures can be found in Section 5.3.

3.2. Decoder

Following Mullenbach et al. (2018), our decoder contains a per-label attention network
for aggregating output features from the encoder and a classification head for final ICD
code prediction. Applying a per-label attention network to the encoder output lets each
ICD code attend to different parts of the token sequence and automatically find the most
relevant tokens to perform prediction. The per-label attention layer is:

A = softmax(HQ) ∈ RN×|C|, (1)

V = A⊤H ∈ R|C|×df , (2)

where Q ∈ Rdf×|C| is the query matrix for each ICD code. Column i in Q represents the
query vector for ICD code i. A represents the attention score of each token with respect to
each ICD code and V is the output matrix computed from A and the encoder output H.
Each row in V represents the weighted sum of the token embeddings for an ICD code based
on the attention scores. These aggregated embeddings are then fed into a classification head
to perform a final linear transformation and sum pooling (Li and Yu, 2020) to get the raw
output ỹ ∈ R|C|:

Z = VW ∈ R|C|×|C|, (3)

ỹ = sum pool(Z) + b, ỹi =

|C|∑
j=1

Zij + bi (4)

where W ∈ Rdf×|C| is the weight matrix of the final linear layer and b is the bias term. The
output logits are computed via the Sigmoid function: ŷ = σ(ỹ).

3.3. HiCu: Hierarchical Curriculum Learning

We now present our hierarchical curriculum learning algorithm for automated ICD coding.
We first describe a generic learning algorithm for multi-label classification. In Section 4,
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we illustrate why ICD coding can be benefited from hierarchical curriculum learning and
how to apply our algorithm to automate ICD coding from discharge summaries. Figure 1
illustrates the overall procedure of our hierarchical curriculum learning algorithm. Given
the task of training |C| binary classifiers over a label set C based on input x, our algorithm
solves the problem using the following steps.

• We construct a label tree from the label set C, where each label c ∈ C is located at
the last level (leaf node) in the label tree.

• We then generate a hierarchical training curriculum and sequentially train our model
to predict the labels at each level of the label structure. During the training process,
the weights in the per-label attention network at each level are initialized using a
knowledge transfer process and guided by hyperbolic embeddings.

• The model outputs predictions of the labels at the last level of the tree structure,
which are the labels in the target label set C.

3.3.1. Generating Curricula from Label Trees

The key idea that we exploit is that structure in the output space of labels is a natural
lever that practitioners can leverage to create ordered tasks from easy to difficult. Our
conjecture is the algorithm results in helping models find better local minima by iteratively
solving tasks and building up to the final one rather than solving the final task directly.
This learning curriculum is generated from a label tree constructed from the target label
set C. For label ci in the label set, we define a path Pi = ⟨Vi, Ei⟩ that starts from the root
node and ends at label ci:

Vi = {root, c(1)i , c
(2)
i , ..., c

(Ki)
i }, c(Ki)

i = ci, (5)

Ei = {(root, c(1)i ), (c
(1)
i , c

(2)
i ), ..., (c

(Ki−1)
i , c

(Ki)
i )}, (6)

where V and E denote the set of the vertices (nodes) and edges along this path, respectively.
The label tree can thus be defined as T = ⟨V,E⟩, where V =

⋃
i
Vi and E =

⋃
i
Ei.

The length of the paths for different labels may not always be the same – the target
labels may be located at different levels after the label tree is constructed, making it difficult
to design learning curricula based on the label tree. To solve this problem, for each label
ci in the label set, we introduce an augmented path P̂i = ⟨V̂i, Êi⟩ whose length is always
equal to the maximum length among all root-to-label paths in the label tree T :

V̂i = {root, c(1)i , ..., c
(Ki)
i , c

(Ki+1)
i , ..., c

(Kmax)
i }, c(Ki)

i = c
(Ki+1)
i = ... = c

(Kmax)
i = ci, (7)

Êi = {(root, c(1)i ), (c
(1)
i , c

(2)
i ), ..., (c

(Ki)
i , c

(Ki+1)
i ), ..., (c

(Kmax−1)
i , c

(Kmax)
i )}, (8)

where Kmax is the maximum possible length for all root-to-label paths in the label tree T .
We then define the augmented label tree T̂ = ⟨V̂ , Ê⟩, where V̂ =

⋃
i
V̂i and Ê =

⋃
i
Êi. This

means that target nodes in the middle of the tree are repeated in the augmented tree in
every subsequent layer. In this way, all the target labels will be located at level Kmax under
the root node of the label tree and the multi-label classification problem over the target
label set C can, at the final level, corresponds to |C| binary classification problems.
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3.3.2. Knowledge Transfer with Hyperbolic Correction

Given an augmented label tree T̂ with K levels under the root node, our curriculum learning
algorithm is formulated as a K-round training over the entire tree structure. For round k
in the training process, our training target is to predict the labels at the kth level of the
augmented label tree. Before moving onto the (k + 1)th level, we need to map from the
parameters of the current model onto a new one that predicts over the labels at the (k+1)th

level. We define the following knowledge transfer function that maps from the parameters
of the model at the kth level onto one that predicts labels at the (k + 1)th level.

• For the encoder, parameters for round k+1 are initialized to be the same as the encoder
parameters after round k. In other words, for each round in the training process, the
encoder is fine-tuned based on the pre-trained weights of the previous round. This
transfers knowledge from the previous round and provides a sound initialization of
the model parameters when the training proceeds to predict the actual target labels.

• For the decoder, we initialize the query matrix Q(k+1) in the per-label attention
network as described in Equation 1 for round k + 1 using the following equation:

q(k+1)
ci = q(k)cj , ci ∈ Children(cj), (9)

where q
(k)
c is the query vector (cth column vector in Q(k)) for label c at level k.

Children(c) represents all the child nodes of the label c in the augmented label tree.
The query vectors for the first level are randomly initialized. This process ensures
the query vector for similar labels (sibling labels under the same parent label in the
augmented label tree) are also similar.

It should be noted that a potential problem for training the model using the augmented
label tree is that when there are too few splits for a level in the original label tree, padding
nodes in the augmented label tree will lead to a large amount of redundant intermediate
nodes. As training on these intermediate levels for a label that has appeared before is
identical to continuing to fine-tune the binary classifier for that label, this may lead to
unnecessary computational overhead and possible overfitting of these labels. To mitigate
this issue, we can reduce the number of epochs we train for that level.

Hyperbolic Correction: The knowledge transfer process in our curriculum learning
algorithm implicitly encodes the top-to-bottom hierarchical architecture of the label tree
into the query vectors as described in Equation 1. However, initializing the query vectors of
all the sibling labels to be the same is not ideal: these labels are similar but not identical.
For example, the ICD subtree for type II diabetes contains diverse subcategories based on
the complications of diabetes (such as kidney disease and macular edema). We would like
a way of incorporating bottom-up knowledge about how similar/dissimilar each new child
is based on each leaf’s subtree.

To solve this problem, we turn to hyperbolic embeddings (Nickel and Kiela, 2017), which
are representations that are sensitive to structure inherent in a graph. At the beginning of
the training, we pre-train hyperbolic embeddings for all labels in the label tree T using the
training method introduced in Nickel and Kiela (2017). The created hyperbolic embeddings
can capture the global structure of the entire ICD tree. After the knowledge transfer
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mechanism initializes the query vectors, the hyperbolic embeddings are used to build the
query vectors at every forward propagation step. We present two methods to generate query
vectors:

1. Addition (HiCuA) We use a fully connected layer to transform the hyperbolic
embedding of a label to a vector with the same dimension as the query vector. This
vector is then added to the original query vector at each training step to form the
final query vector q̂ci . The final query vector can be described as:

q̂ci = qci + fc(eci), (10)

where qci is the original query vector described in Equation 9, eci is the hyperbolic
embedding of code ci and fc(·) is the fully connected layer.

2. Concatenation (HiCuC) We concatenate the hyperbolic embedding of a label with
the original query vector, and use a fully connected layer to transform the concate-
nated vector to a new query vector to perform per-label attention. This operation
can be described as:

q̂ci = fc(qci ⊕ eci), (11)

where ⊕ denotes the concatenation operation.

The idea behind the correction mechanism is that for each label in the label tree, the
original query vector initialized by the knowledge transfer process is served as a “base”
query vector. However, this query vector ignores the difference between sibling labels, and
hyperbolic embedding is used to correct the query vector by taking into account the position
of this label in the label tree. The overall learning procedure of our hierarchical curriculum
learning algorithm can be found in Algorithm 1. In Section 5.5, we show that both the
knowledge transfer initialization and the hyperbolic embedding correction contribute to our
model’s performance improvement.

4. Automated ICD Coding

The ICD-9 system classifies diseases in a coarse-to-fine manner. For example, “Diseases Of
The Skin And Subcutaneous Tissue” (680-709) contains three subcategories: “Infections Of
Skin And Subcutaneous Tissue” (680-686), “Other Inflammatory Conditions Of Skin And
Subcutaneous Tissue” (690-698), and “Other Diseases Of Skin And Subcutaneous Tissue”
(700-709). These subcategories can be further divided into categories such as “Carbuncle
and furuncle” (680), “Cellulitis and abscess of finger and toe” (681), and “Other cellulitis
and abscess” (682), etc. As in Figure 5, this disease taxonomy can be naturally represented
by a tree structure, making our method a natural fit for automated ICD coding.

4.1. ICD Code Label Tree

Based on the structure of the ICD-9 code system, we design a five-level ICD code label
tree (root level = 0) and fit both diagnosis and procedure codes into this tree. We regard
each label in the dataset as a leaf node and construct a path from the leaf node to the
root node. As shown by path A in Figure 2, The first two levels in the code tree contain
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Figure 2: A fraction of our ICD code label tree for hierarchical curriculum learning.

ICD code ranges representing the general disease classifications. The third level includes all
integer codes, where the diagnosis code is a three-digit number and the procedure code is
a two-digit number. The fourth and fifth levels contain ICD codes with one decimal place
and two decimal places, indicating finer-grained disease classifications. For some diagnosis
codes (e.g., subcodes under 740-759) and all procedure codes, these codes do not contain
the second code ranges (level two in the code tree) in the original ICD code system. To
align with other codes, we manually create an intermediate level that is also represented
using a code range, but the start and end values of this code range are the same, as shown
by paths B and C in Figure 2. Furthermore, for some labels in the dataset that are integer
codes or codes with only one decimal place, we copy the same code for the fourth and fifth
levels to generate a full code tree, as shown by paths D and E in Figure 2.

4.2. Learning Objective

Prior work (McCallum, 1999; Mullenbach et al., 2018) has treated the prediction of ICD
codes as a multi-label classification problem. For each ICD code, the learning objective
is to minimize a binary cross-entropy loss. The overall loss function can be expressed as:

L = −
∑|C|

i=1 yi log(ŷi) + (1− yi) log(1− ŷi), where ŷi is the ith output logit described in
Section 3.2 and yi is the corresponding ground truth.

While the binary cross-entropy loss is widely used, it may not be a good choice for multi-
label classification (Wu et al., 2020; Oksuz et al., 2020; Lin et al., 2017) when the label space
is very large and a very small number of labels are presented for any given example. Ben-
Baruch et al. (2020) proposed the Asymmetric Loss (ASL) that downweights easy negative
samples so the model can focus on identifying less frequently occurring positive labels. The
asymmetric loss consists of two mechanisms: asymmetric focusing and probability shifting.
It can be expressed as below:

L = −
∑
i

yi(1− ŷi)
γ+ log(ŷi) + (1− yi)pm

γ−
i log(1− pmi), (12)

where γ+ and γ− are focusing parameters, and pmi is the shifted probability. Note that
γ+ is set to be smaller than γ− to emphasize the contribution of rare positive ones. The
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asymmetric focusing helps the network to achieve a balanced loss generated by the positive
and negative samples and contributes to the more meaningful training process. The shifted
probability is defined as:

pmi = max (ŷi −m, 0), (13)

where the probability margin m ≥ 0 is a tunable hyperparameter that functions as a
threshold to ignore mislabeled negative samples.

For ICD coding, the distribution of ICD codes (the labels) is often very skewed. In
practice, patients often exhibit a handful of common codes, but the average ratio between
positive and negative samples in each document in our dataset is 15.9 : 8906.1 = 0.0018,
which is very imbalanced. Consequently, to focus learning more on positive labels and
consequently, we learn with the ASL loss described in Equation 12.

5. Experiments

5.1. Dataset

We used the third version of the Medical Information Mart for Intensive Care (MIMIC-III)
dataset (Johnson et al., 2016) to test our models in this study.

MIMIC-III We focus on discharge summaries, which summarize all information during
each patient’s stay. Every stay was manually labeled by coders using one or more ICD-9
codes, denoting the performed diagnoses and procedures. There are 52,722 discharge sum-
maries and 8,929 unique codes in this dataset. Following the previous work, the experiments
were conducted separately by using the full set of codes and using the most frequent 50
codes. For the full-code experiment, the data was separated using patient IDs, ensuring
that each patient appeared in only one of the training, validation, or testing sets. There
are 47,719 training discharge summaries, 1,631 validation summaries, and 3,372 testing
summaries. For the top-50 code experiment, the subset of 11,317 discharge summaries was
generated, consisting of 8,067 discharge summaries for training, 1,574 for validation, and
1,730 for testing.

Preprocessing Following (Li and Yu, 2020; Mullenbach et al., 2018), the summary text
was first preprocessed with only alphabetic characters left and was then transformed into
lowercase. Then, we pre-train word embeddings using the Word2Vec CBOW method
(Mikolov et al., 2013) on all discharge summaries from the MIMIC-III dataset. Detailed hy-
perparameters of the Word2Vec embeddings for different encoder architecture can be found
in Appendix A. The code to reproduce our results is ready for public release.

5.2. Evaluation Metrics

We report a variety of different evaluation metrics in our experiments. We focused on
the micro-averaged and macro-averaged AUC (area under the ROC curve) and F1 scores.
Micro-averaged AUC or F1 are computed by regarding every pair of summary text and codes
as a separate prediction, while macro-averaged AUC or F1 are computed by averaging the
metrics for each label. The macro-averaged AUC pays more attention to the prediction of
rare labels. We also utilized precision at K metrics (P@K) for evaluation, which presented
the proportion of accurately predicted labels in the top-K predicted labels. As mentioned
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in Mullenbach et al. (2018), this was motivated by the reality that users review only a fixed
number of ICD codes. In the full-code experiment, we applied the P@5, P@8, and P@15
metrics, while in the 50-code experiment, we employed the P@5 metric. We refer the reader
to the supplementary material for details on the implementation.

5.3. Encoder Architectures

As discussed in Section 3.1, we utilize and replicate three encoder architectures to test the
effectiveness of HiCu for automated ICD coding:

Bi-LSTM, based on LAAT (Vu et al., 2020) The Bidirectional Long-Short Term
Memory (Bi-LSTM) encoder contains a Word2Vec embedding layer and a Bi-LSTM feature
extraction layer. Similar to MultiResCNN, the embedding layer first generates a word em-
bedding for each input token. The Bi-LSTM layer then extracts contextual representations−→
H and

←−
H, where

−→
H is generated by the forward LSTM layer and

←−
H by the backward LSTM

layer. The output text representation matrix H ∈ RN×2u is the concatenation of
−→
H and←−

H, where u is the dimension of the forward/backward LSTM hidden states.

MultiResCNN (Li and Yu, 2020) The Multi-Filter Residual Convolutional Neural
Network (MultiResCNN) model is designed based on TextCNN (Kim, 2014) and ResNet
(He et al., 2016). Given the input word sequence t, it first uses a pre-trained Word2Vec
embedding layer to convert the input word indices into a word embedding matrix E ∈
RN×de , where de is the dimension of the word embeddings. The multi-filter residual CNN
layer contains m convolutional filters with different kernel sizes. On top of each filter, there
is also a residual convolutional layer to enlarge the receptive field of the network. The
output Hr ∈ RN×dr from each residual convolutional layer are concatenated to form the
final output text representation matrix H ∈ RN×df , where df = m× dr.

RAC reader (Kim and Ganapathi, 2021) The RAC reader is composed of the Con-
volved Embedding Module and the Self-Attention Module. The Convolved Embedding
Module uses a pre-trained Word2Vec embedding layer followed by two CNN layers to repre-
sentations of text. The output from the Convolved Embedding Module is then sent into the
Self-Attention Module, which is a stack of four transformer blocks similar to Vaswani et al.
(2017). This module extracts word semantics and generates contextual representations.
Each transformer block contains one attention head, but unlike the standard transformer
architecture, the model is designed to be permutation equivariant2.

5.4. Baselines

Other than the models we implemented in Section 5.3, we also compare our proposed
approach against several state-of-the-art baselines for this task.

CAML Convolutional Attention network for Multi-Label classification model (Mullen-
bach et al., 2018) consists of one convolutional layer and one per-label attention layer,
allowing the model to generate label-related features for the multi-label classification.

2. The output ICD code assignment will not be changed regardless of the order of the input word sequence.
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Table 1: MIMIC-III Full Code Results (in %). The results we obtained are shown in means ±
standard deviations from 10 random runs. The first block in the table shows the baseline results
reported in the papers. The following three blocks specify three groups of experiments, each show-
ing the baseline we re-implemented (with *) and the corresponding models we further evaluated
with our HiCu learning algorithm. The bold values indicate the best results we obtained from
all experiments, whereas the underlined values indicates the best results among each experiment
group.

Model
AUC F1 Precision@K

Macro Micro Macro Micro P@5 P@8 P@15

CAML 89.5 98.6 8.8 53.9 - 70.9 56.1
DR-CAML 89.7 98.5 8.6 52.9 - 69.0 54.8
MSATT-KG 91.0 99.2 9.0 55.3 - 72.8 58.1
HyperCore 93.0 98.9 9.0 55.1 - 72.2 57.9
JointLAAT 92.1 98.8 10.7 57.5 80.6 73.5 59.0

LAAT* 92.0±0.11 98.8±0.02 9.7±0.24 57.4±0.16 81.2±0.22 73.9±0.17 59.0±0.14

w/ HiCuA 94.8±0.07 99.1±0.01 10.2±0.21 57.4±0.11 81.2±0.12 73.9±0.10 59.1±0.09

RAC* 93.0±0.08 98.8±0.02 7.9±0.30 55.4±0.27 80.8±0.15 73.2±0.18 57.8±0.11

w/ HiCuA 94.3±0.09 99.0±0.01 8.4±0.17 56.5±0.17 81.2±0.32 73.8±0.17 58.8±0.12

w/ HiCuC 94.4±0.15 99.0±0.01 8.4±0.54 55.8±0.44 81.1±0.22 73.6±0.20 58.6±0.12

MultiResCNN* 91.2±0.23 98.7±0.02 8.6±0.40 56.2±0.34 81.7±0.17 74.3±0.20 59.1±0.22

w/ HiCuA 94.7±0.10 99.1±0.02 9.2±0.33 56.7±0.29 82.0±0.14 74.8±0.16 59.6±0.07

w/ HiCuC 94.6±0.12 99.1±0.01 9.3±0.55 56.6±0.45 82.1±0.11 74.8±0.17 59.6±0.14

w/ HiCuA+ASL 93.7±0.20 98.9±0.02 11.4±0.36 57.6±0.13 82.4±0.16 75.1±0.14 59.8±0.12

w/ HiCuC+ASL 94.0±0.33 98.9±0.04 11.5±0.41 57.4±0.21 82.4±0.25 75.1±0.19 59.7±0.09

DR-CAML Description Regularized CAML is an extension of CAML which utilizes
the text description of each code to regularize the model.

MSATT-KG Multi-Scale Feature Attention and Structured Knowledge Graph Prop-
agation (Xie et al., 2019) composes a dense convolutional layer and a multi-scale feature
attention layer. The hierarchical information among labels is captured during prediction
using a graph convolutional network (Kipf and Welling, 2016).

HyperCore The Hyperbolic and Co-graph Representation method was proposed by
Cao et al. (2020). It contains a hyperbolic embedding layer to leverage the code hierarchy
and a graph convolutional network to utilize the code co-occurrence.

JointLAAT Joint Label Attention model is an extension of LAAT (Vu et al., 2020)
with a hierarchical joint learning mechanism, which was proposed to tackle the problem of
imbalanced labels.

5.5. Results

Following (Li and Yu, 2020; Mullenbach et al., 2018), we compared the results respectively
in full-code and top-50-code MIMIC-III datasets. We show both the original and enhanced
results for each selected encoder architecture with our HiCu algorithm. “HiCuA” indicates
our HiCu algorithm with the addition method for the hyperbolic correction part, while
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Figure 3: AUC Improvements on Rare Codes: AUC Score difference between vanilla Mul-
tiResCNN and (MultiResCNN w/ HiCuA+ASL). ICD codes are grouped by their fre-
quency (i.e. occurring times in ground truth). This figure shows the increase of average
AUC scores (in %) inside of each frequency group. For example, the size of the bar plot
above code frequency ”1” indicates the increase of average AUC scores within the code
subset that appears only once in the training set. The figure indicates a visible enhance-
ment on rare code prediction.

“HiCuC” indicates the same algorithm with the concatenation method. ASL indicates
using the asymmetric loss instead of the standard binary cross-entropy loss.

HiCu improves generalization across all metrics, over convolution, recurrent
and transformer-based neural networks The full-code results in Table 1 show that
compared to LAAT, RAC reader and MultiResCNN, we find that our algorithm improves
performances across all metrics.3 By leveraging the label hierarchy to generate curricula,
HiCu pushes the performance of the same encoders enabling them to generalize signifi-
cantly better than they would without the use of curriculum learning. The models trained
with HiCu result in the strongest performance among all models on all metrics except
Micro-AUC. Our overall best model (MultiResCNN w/ HiCuA+ASL) outperforms its cor-
responding baseline MultiResCNN and improves Macro-AUC by 2.7%, Micro-AUC by 0.2%,
Macro-F1 by 32.6%, Micro-F1 by 2.5%, P@5 by 0.9%, P@8 by 1.1%, and P@15 by 1.2%.

HiCu’s improvements in performance are most visible among rare labels In
multi-label classification, each label is not equally likely to occur. Indeed the distribution
over ICD codes is long-tailed. The results from Table 1 indicate that we observed improve-
ments in the Macro metrics; this suggests that our algorithm can better handle the long-tail
of ICD codes and improve predictive performance on rare labels.

To better understand how our HiCu algorithm improves the Macro AUC/F1 scores,
we plot the increase of average AUC scores between the vanilla MultiResCNN model and
our (MultiResCNN w/ HiCuA+ASL) model as a function of ICD code frequency in the
full-code test dataset (Figure 3). For the rare codes that occur less than or equal to fifty
times in the ground truth, we group these codes based on their frequency and compute the
average AUC increases. It is worth mentioning that these rare labels already cover 43.1%

3. The re-implementation details of the * models are listed in appendix A.
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Table 2: Ablation Study Results (in %). The results we obtained are shown in means from
10 random runs. MultiResCNN model are used as the baseline here. (KT) indicates
the knowledge transfer process. (HCA) and (HCC) respectively indicate the hyperbolic
correction with the addition and concatenation method. Steady improvements on different
metrics are shown step by step in the table.

Model
AUC F1 Precision@K

Macro Micro Macro Micro P@5 P@8 P@15

MultiResCNN* 91.2 98.7 8.6 56.2 81.7 74.3 59.1
w/ KT 93.8 99.0 8.9 56.4 81.6 74.3 59.1
w/ KT+HCA 94.7 99.1 9.2 56.7 82.0 74.8 59.6
w/ KT+HCC 94.6 99.1 9.3 56.6 82.1 74.8 59.6
w/ KT+HCA+ASL 93.7 98.9 11.4 57.6 82.4 75.1 59.8
w/ KT+HCC+ASL 94.0 98.9 11.5 57.4 82.4 75.1 59.7

of the labels in the dataset, and around 45.7% of labels never appear in the ground truth of
the test dataset. The results show that gains in AUC scores at rarer labels are emphasized.
For the codes with a frequency less than 15, we see a coherent AUC increase, indicating
that our HiCu algorithm significantly improves classification rates across the rare labels.

HiCu’s performance improves with label size To quantify the effect of the size of
the label set, we study the predictive performance of the 50-code version of the dataset.
In this dataset, the numbers of nodes in different tree levels are approximately the same.
As shown in Table 4 (of the supplementary material), we find that our best model obtains
competitive results at each metric relative to the vanilla LAAT, MultiResCNN, and RAC
models. However, we note that the improvements from using HiCu are much more pro-
nounced on the more realistic, full-code version in Table 1, suggesting that the data regime
in our method works best when there is a large label space (and consequently a deeper and
wider hierarchy to take advantage of in building curricula).

Disentangling HiCu’s improvements in performance To better understand how
each part of HiCu contributes to the improvements in learning, we perform an ablation
study using the MultiResCNN (Li and Yu, 2020) encoder in Table 2. Compared to the
vanilla MultiResCNN model with a randomly initialized query matrix in the decoder, the
introduction of our knowledge transfer mechanism (MultiResCNN w/ KT) improves the
model performance for both AUC and F1 metrics and remain competitive for the Pre-
cision@K metrics. The improvement is pronounced for the Macro-AUC score, indicating
HiCu enables models to better predict rare codes.

Our hyperbolic embedding correction mechanism further provides a steady enhancement
to the model performance. Both addition (MultiResCNN w/ KT+HCA) and concatenation
(MultiResCNN w/ KT+HCC) operations improve the model performance for all evaluation
metrics.

With the asymmetric loss function (ASL), our model is again further improved. ASL
steadily strengthens the performances in F1 scores and Precision@K, which achieve the best
in our experiments. Due to ASL’s ability to deal with imbalanced data, the improvements
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are particularly critical in the metrics of Macro F1. Though the AUC scores are slightly
lowered, the dramatic improvements in higher F1 scores make this a desirable change.

Query vectors @ Level 1 Query vectors @ Level 3 Query vectors @ Level 5

Figure 4: Query vectors of the ICD codes at each level in the decoder using the model “Mul-
tiResCNN+HiCuA+ASL”. The query vectors are reduced to two dimensions using t-
SNE. Points with the same colors indicate sibling ICD codes under the same parent.

Visualizing HiCu To interpret the per-label attention mechanism, we visualized the
attention matrix A (as described in Equation 1) given different input discharge summaries,
and specifically listed the visualization results for the ICD codes 250.00 (Diabetes mellitus
without mention of complication, type II or unspecified type, not stated as uncontrolled)
(Figure 6) and 401.9 (Unspecified essential hypertension) (Figure 7). Each visualization
result is generated by focusing on only one ground true label and one input text, showing the
attention weights between the label and the 16 top-weighted tokens in the input. We select
several representative results from some of the instances and display them in the appendix.
All of the results are based on our selected model (MultiResCNN w/ HiCuA+ASL). The
visualization results show that the per-label attention mechanism can consistently focus on
relevant words even if the input discharge summaries are different.

To understand how HiCu organizes the representation of the ICD codes during the
training process, we visualize the query vectors (see Q in Equation 1) of the ICD codes at
each level of the label tree using t-SNE (Van der Maaten and Hinton, 2008). As shown in
Figure 4, starting from the first level, the query vectors of the ICD codes are organized in
clusters. As more labels are added to downstream levels, sibling codes (codes under the
same parent in the label tree) are grouped together. The t-SNE results showcase that the
improvements in generalization happen because early steps in the curricula create regions
in representation space that are set aside for further child labels to be added. Even if a
child label is rare, as long as one or more of its parents is frequent, it will occupy a region
in representation space close to similar labels.

6. Discussion

HiCu is an easy-to-implement method for curriculum learning that improves predictive
performance for multi-label classification across several state-of-the-art choices of encoders.
For the practical problem of ICD coding, we show that our learning algorithm results in
models that generalize better and are more capable of accurately predicting less frequently
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occurring ICD codes. While there is some theoretical research on curriculum learning (Li
et al., 2022; Weinshall and Amir, 2020), showing that the gradual increase in depth in the
label tree corresponds to an increase in complexity in the learning task at each level would
be an interesting direction to investigate the theoretical properties of our algorithm.

Limitations One of the key limitations of HiCu is that it requires access to privileged
information in the form of structure that is shared among labels. When not readily available,
this information can be obtained by querying domain experts. In this work, we studied the
application of the algorithm to predicting ICD codes – the codes lie at the leaves of the label
tree – studying the algorithm on multi-label classification problems where the labels lie at
intermediate nodes in the hierarchy would be of immediate interest for further investigation.
Finally, it is important to acknowledge that while predicting ICD codes, we do not correct
for bias in the labels (since ICD codes are created for billing, they may be selected to
maximize revenue via reimbursement).
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Appendix

A. Implementation and Hyper-parameter Settings

Our HiCu algorithm was implemented using PyTorch (Paszke et al., 2019). For the Mul-
tiResCNN encoder, we strictly follow the hyper-parameter settings of the encoder introduced
in Li and Yu (2020) to train our models. For the Bi-LSTM encoder, We use the official
LAAT codebase4 instead of our codebase to test the LAAT models as their preprocessing
method is different from ours. For the RAC reader encoder, we re-implemented their model
since the code has not been publicly released. We follow most of the hyper-parameter set-
tings introduced in (Kim and Ganapathi, 2021) with two modifications. First, we pre-train
Word2Vec embeddings for discharge summaries with a minimum word frequency count of
3 instead of 10, as setting this hyper-parameter to 10 results in even worse performance.
Second, for all the convolutional filters in the encoder architecture, we set the filter size to 9
instead of 10 to avoid creating an extra dimension for the token features after convolution.

We employ the Adam (Kingma and Ba, 2014) optimizer for the MultiResCNN and RAC
reader models and the AdamW (Loshchilov and Hutter, 2017) optimizer for the Bi-LSTM
models. Detailed training hyper-parameters can be found in Table 3. The Bi-LSTM and
MultiResCNN-based models are trained using a single NVIDIA Tesla V100 GPU, and the
RAC reader-based models are trained using four NVIDIA Tesla V100 GPUs. For ASL loss
function hyper-parameters [γ−, γ+,m] (as described in Equation 12), we perform a grid
search over different hyper-parameter configurations, ending up with the optimal values [1,
0, 0.05] on the full-code dataset and [1, 0, 0.03] on the 50-code dataset.

Table 3: Training hyper-parameters for the full code and top-50 code experiments. “Input len.”
specifies the input sequence length for each model. “Emb. dim” stands for the dimension of
Word2Vec embeddings, and “Tune emb.” indicates whether to finetune word embeddings
during training. “E.S” represents early stopping, and “Sche.” stands for the training
scheduler. “Epochs” indicates the different numbers of epochs for the five training rounds.

Parameters
Bi-LSTM MultiResCNN RAC Reader

Full 50 Full 50 Full 50

Input len. 4000 4000 4096 4096 4096 4096
Emb. dim 100 100 100 100 300 300
Tune emb. No No Yes Yes Yes Yes
Optimizer AdamW AdamW Adam Adam Adam Adam
Batch size 8 8 8 8 16 16
Learning rate 5e-4 5e-4 5e-5 5e-5 8e-5 8e-5
Epochs 2,3,3,3,50 1,1,1,1,50 2,3,5,10,50 2,2,3,5,50 2,3,5,7,50 2,2,3,5,50
E.S. metric P@8 Micro-F1 P@8 P@8 P@8 P@8
E.S. patience 6 6 10 10 10 10
Sche. factor 0.9 0.9 N/A N/A N/A N/A
Sche. patience 2 5 N/A N/A N/A N/A

4. https://github.com/aehrc/LAAT
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B. Supplementary Materials

680-709 Diseases Of The Skin And Subcutaneous Tissue
680-686 Infections Of Skin And Subcutaneous Tissue

680 Carbuncle and furuncle

681 Cellulitis and abscess of finger and toe

680.0 Carbuncle and furuncle of face
680.1 Carbuncle and furuncle of neck
......

681.0 Cellulitis and abscess of finger
681.00 Cellulitis and abscess of finger, unspecified
681.01 Felon
......

690-698 Other Inflammatory Conditions Of Skin And Subcutaneous Tissue

700-709 Other Diseases Of Skin And Subcutaneous Tissue
......

690 Erythematosquamous dermatosis

691 Carbuncle and furuncle
......

......

690.1 Seborrheic dermatitis
690.8 Other erythematosquamous dermatosis

680-709

680-686 690-698 700-709

680 681 ... 690 691 ... ...

680.0 680.1 681.0

681.00 681.01 ...

690.1 690.8... ...

Figure 5: An example of representing the ICD-9 taxonomy using a tree structure.

Algorithm 1 HiCu: Hierarchical Curriculum Learning

Data = {x,y}Di=1: training dataset
Enc: text encoder for discharge summary feature extraction
Dec: decoder network for per-label attention and classification
T : label tree generated from y
T̂ : augmented label tree generated from y and T
Eh: hyperbolic embeddings for ICD codes generated using T
T, T̂ ← GenerateLabelTree(y)
Eh ← TrainHyperbolicEmbeddings(T )
for k in range(T̂ .maxLevel + 1) do

for i in range(nEpochs[k]) do
for x,y in dataloader(Data) do

H← Enc(x)
ȳ← Deck(H, Eh)
Loss ← ASL(ȳ,y)
Loss.backward()
Optimizer.step()

end

end

if k ̸= T̂ .maxLevel then
Deck+1.Q ← KnowledgeTransfer(Deck.Q)

end

end
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Table 4: MIMIC-III 50 Code Results (in %). The results we obtained are shown in means
± standard deviations from 10 random runs. The first block in the table shows the
baseline results reported in the papers. The following three blocks specify three groups of
experiments, each showing the baseline we re-implemented (with *) and the corresponding
models we further evaluated with our HiCu learning algorithm. The bold values indicate
the best results we obtained from all experiments, whereas the underlined values indicates
the best results among each experiment group.

Model
AUC F1 Precision@K

Macro Micro Macro Micro P@5

CAML 87.5 90.9 53.2 61.4 60.9
DR-CAML 88.4 91.6 57.6 63.3 61.8
MSATT-KG 91.4 93.6 63.8 68.4 64.4
HyperCore 89.5 92.9 60.9 66.3 63.2
JointLAAT 92.5 94.6 66.1 71.6 67.1

LAAT* 92.3±0.16 94.4±0.11 65.6±0.45 71.2±0.21 67.0±0.20

w/ HiCuA+ASL 92.1±0.14 94.2±0.06 66.4±0.37 70.9±0.26 66.9±0.12

RAC* 88.3±0.06 91.1±0.06 56.0±0.31 62.1±0.33 61.0±0.14

w/ HiCuA 90.8±0.09 93.2±0.06 63.1±0.50 67.9±0.17 64.4±0.25

w/ HiCuC 90.7±0.09 93.0±0.09 62.0±1.07 67.2±0.55 63.9±0.24

MultiResCNN* 89.8±0.69 92.6±0.40 60.8±1.71 66.5±1.10 63.5±0.76

w/ HiCuA 91.1±0.18 93.5±0.08 63.1±0.62 68.2±0.38 64.4±0.24

w/ HiCuC 91.4±0.26 93.7±0.12 63.3±0.67 68.5±0.31 65.2±0.16

w/ HiCuA+ASL 91.4±0.10 93.6±0.08 65.3±0.25 68.7±0.18 64.9±0.25

w/ HiCuC+ASL 91.7±0.06 93.8±0.06 65.6±0.32 69.0±0.21 65.3±0.26
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C. Attention Visualization Results

250.00 diabetes
glyburide
history
avandia
simvastatin
methimazole
avapro
sudden
medical
instructions
instructions
discharge
on
none
24pm
medications

(a)

250.00 diabetes
mellitus
diabetes
mellitus
metformin
glyburide
metformin
sugars
glyburide
actos
refills
caucasian
actos
his
condition
glaucoma

(b)

Figure 6: Attention visualization results for the code 250.00 (type II diabetes) using model “Mul-
tiResCNN+HiCuA+ASL” trained in the full-code MIMIC-III dataset. The left side is
the ground true code, and the right side are 16 top-weighted input tokens ordered from
high to low top down. The width of lines suggest the size of the corresponding weight.
It is clear that some of the tokens like “diabetes”, “glyburide” coherently occur in the
results, which are closely related to the ground true ICD code, and indicate the successful
predictions.
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401.9 htn
klorcon
diovan
vicodin
lasix
amlodipine
lopressor
synthroid
fluticasone
admission
history
fexofenadine
alendronate
on
date
arthritis

(a)

401.9 htn
hypertension
htn
htn
amlodipine
amlodipine
amlodipine
chronic
reduced
metoprolol
abilify
copd
medicine
disease
furosemide
and

(b)

Figure 7: Attention visualization results for the code 401.9 (unspecified essential hypertension)
with model “MultiResCNN+HiCuA+ASL” trained in the full-code MIMIC-III dataset.
Related tokens like “htn” (stands for the abbreviation of hypertension), “amlodipine”
coherently appear in the results. Most of the top-weighted tokens represent the medicine
used for hypertension treatment.
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