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Abstract

Despite significant progress in explainable Machine Learning (ML) tools (such as LIME,
SHAP and explainable boosting machines) in explaining ML models’ risk predictions in
clinical problems (such as heart failure, acute kidney injury, sepsis and hypoxaemia during
surgery), the interpretations generated remain to be an unfamiliar language to most clin-
icians. Clinical scores continue to be the preferred tool for risk stratification as they are
concise, clinically correlatable and can be used at patient’s bedside without a machine. In
this work, we reproduce the classical clinical scoring development approach to uncover its
limitations in determining categorical features and using logistic regression coefficients to
derive additive integer scoring systems. Subsequently, we propose the Unified Automatic
Clinical Scoring (Uni-ACS) development framework, which overcomes these limitations to
translating ML models into clinical scores by leveraging on explainable outputs from SHAP
compatible ML models. We hypothesize that this approach is model agnostic, can be au-
tomated and can retain the complex predictive power of the underlying ML model, while
relating key model insights to clinicians in a clinical risk scoring format. In our experiments,
we applied Uni-ACS to a variety of ML models trained on the MIMIC III and MIMIC IV
sepsis cohorts to predict mortality and ICU admission. We showed that Uni-ACS derived
clinical score retained a greater proportion of the underlying ML models’ predictive perfor-
mance (lowest AUROC drop of 2.44%), compared against the baseline clinical score (lowest
AUROC drop of 5.79%). We further verified Uni-ACS clinical score’s insights against the
current literature to show its clinical applicability. Uni-ACS and datasets used for method
validation are open-sourced for the community to use and verify1.

1. https://github.com/llja0112/Uni-ACS
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1. Introduction

Recent advances in Machine Learning (ML) interpretability, in the form of Local Inter-
pretable Model Agnostic Explanations (LIME) by (Ribeiro et al., 2016), SHapley Additive
exPlanations (SHAP) by (Lundberg and Lee, 2017) and explainable boosting machines by
(Nori et al., 2019), have held great promise in exposing the “black box” ML models, thus
reducing the barrier for widespread adoption of ML models for clinical risk prediction.
However, clinical scores remain to be the default and most popular means of estimating
patient outcomes. Online medical calculator website MDCalc estimates that “millions of
medical professionals” over “200+ countries” and “65% of US physicians” use its services
monthly to calculate risk with clinical scores (Walker and Habboushe, 2022). Additionally,
they are commonly applied and widely validated for medical conditions such as ischaemic
heart disease (TIMI by (Morrow et al., 2000), GRACE by (Fox et al., 2006)), atrial fibril-
lation (CHA2DS2-VASc by (Lip et al., 2010), HAS-BLED by (Pisters et al., 2010)), sepsis
(APACHE by (Knaus et al., 1985), qSOFA by (Singer et al., 2016)) and many other diseases
(Well’s criteria for deep venous thrombosis by (Wells et al., 1995), MELD for end stage liver
disease by (Kamath et al., 2001)).

Clinical scores are defined as additive integer scoring systems designed to stratify risk for
specific patient outcomes. They are conventionally developed based on logistic regression
models with manually selected clinical features. Individual features are assigned integer
values for: (a) specific feature value ranges for continuous variables and, (b) specific cate-
gories for nominal or binary feature variables. These integer values are added up to a final
clinical score. Different cumulative scores correlate with different risks associated with an
outcome.

Plausible reasons for why clinical scores remain the preferred interface for risk models
amongst clinicians are as follows. Firstly, clinical scores are concise, which allows clini-
cians to remember them easily. Secondly, clinical scores are easy to interpret and correlate
clinically, as they provide a quantifiable integer weightage for each predictor’s impact on
adverse outcome. Finally, clinical scores can be used without a machine. This is critical
when clinicians require a bedside estimation of risk while treating infectious diseases like
SARS-CoV-2 infections, where clinicians would be in full personal protective equipment and
might not have access to digital devices for infection control purposes.

While explainable ML has been applied to predicting clinical outcomes for a non ex-
haustive list of conditions such as heart failure (Lu et al., 2021), acute kidney injury (Tseng
et al., 2020) and hypoxaemia in surgery (Lundberg et al., 2018), the interpretations do not
offer an equivalent interface to clinical scores. Therefore, this paper proposes the implemen-
tation of Unified Automatic Clinical Scoring (Uni-ACS) to translate clinical ML models into
clinical scores. We highlight the following generalizable insights regarding our approach.

Generalizable Insights about Machine Learning in the Context of Healthcare

• Uni-ACS is an automated and model agnostic methodology for translating SHAP
compatible ML models into clinical scores, an interface currently most preferred by
clinicians for estimating clinical risk.
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• Uni-ACS clinical scores retain global and local SHAP interpretations of ML models,
thus providing clinicians with consistent interpretable risk estimation methods from
bedside to machine.

• Uni-ACS clinical scores would preserve a reasonable portion of the original ML models’
predictive performance. In this paper, we also showed that Uni-ACS clinical scores,
generated fromMLmodels, had superior predictive performance compared to baseline,
classical clinical scores.

2. Related Work

As suggested in the introduction, there are a number of scores, such as TIMI, GRACE,
CHADS2VASC, HAS-BLED, APACHE, qSOFA, Well’s and MELD, which are currently
in active clinical use. Our literature review revealed the following groups of work, where
clinical scoring were done in conjunction with ML modelling: (a) Conventional clinical
scores were developed in parallel to ML models. Examples include prediction of arterial
hypertension in primary hyperaldosteronism (Buffolo et al., 2021) and severity of disease in
COVID-19 ISARIC score (Knight et al., 2020). (b) ML models were built on clinical scores
as input features. Examples include prediction of obstructive coronary artery disease in
coronary computed tomography angiography (Al’Aref et al., 2020). (c) A framework was
defined for automatic clinical scoring development, where ML was used to choose feature
subset and logistic regression was used to develop the final score (Xie et al., 2020). (d) An
approach was proposed to learn clinical score directly from data with a mixed integer non
linear program augmented by a cutting plane algorithm, Risk SLIM (Ustun and Rudin,
2019). Examples of Risk SLIM’s applications included clinical problems of sleep apnea
(Ustun and Rudin, 2016), seizure (Ustun and Rudin, 2017), appendicitis (Aparicio et al.,
2021), kidney transplant (Profitlich and Sonntag, 2019) and the non-clinical problem of
criminal law (Wang et al., 2022).

The classical clinical scoring development approach, applied in several variants as de-
scribed non-exhaustively in related works (a), (b) and (c), was a post logistic regression
modelling approach, supplemented by heuristics such as scaling and rounding regression
coefficients to integer scores (Cole, 1993). In contrast to this post hoc approach, related
work (d), Risk SLIM, derived its advantage in being a highly predictive scoring system by
optimizing the clinical score directly from data, with integer coefficient and operational con-
straints. Without a post ML modelling approach to developing clinical scores in the current
literature, highly predictive ML models and clinical scores would have to be developed in
separate silos. This denies the clinician an opportunity to apply a clinical score, which is
consistent in its understanding of risk with the best black box ML model.

3. Methods

We describe the classical clinical score development methodology here for 2 reasons: (1)
Uni-ACS was built on its definition and algorithmic heuristics. (2) We aim to use it as a
baseline. Hence, we systematically reproduce it as a series of steps and discuss the variations
at each step.
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3.1. Classical clinical score development

Clinical scores have the following components:

• Component A, clinical scoring table: This table consists of risk factors and their
associated integer score values. Each risk factor is a predictive feature with a well
defined range of values. If a patient’s feature value falls within this range of values,
the feature will be assigned the integer score adjacent to it. Individual scores would
be added up to give a final aggregated score.

• Component B, Score to risk mapping table: This table maps the aggregate
scores to their respective actual risk percentages. An alternate representation to risk
percentages would be the odds ratio.

TIMI, a clinical score by (Morrow et al., 2000) for predicting mortality risk in patients
with acute coronary syndrome, is used to illustrate these components. Appendix A’s Sup-
plementary Table 1 show’s TIMI’s clinical scoring table and Appendix A’s Supplementary
Table 2 show’s TIMI’s score to risk mapping table. The developmental process for such a
clinical score can be outlined with the following 5 steps.

Step 1: Feature selection

Clinical features for inclusion into the clinical score can be manually handpicked by clinicians
or chosen automatically with a search algorithm. Clinicians might opt to choose a specific set
of features for practical reasons: (1) Not all features might be obtainable at point of consult.
(2) Specific features might have close physiological relation to the outcome of interest. Any
algorithmic feature selection method can be classified as either a wrapper, filter or embedded
method, as described by (Guyon and Elisseeff, 2003). Features of traditionally established
clinical scores were selected with a filter based method, in which a statistical measure
would be used to choose the most parsimonious subset of features. Features of contemporary
clinical scores, such as the ISARIC COVID severity score (Knight et al., 2020), were selected
with a wrapper based method, in which ensemble random forest decision trees would be
commonly used as the learning algorithm of choice.

Step 2: Feature value categorisation

Component A of a clinical score, as exemplified in Appendix A’s Supplementary Table 1, re-
quires risk factors to have distinct categories. Dichotomous clinical features such as history
of Diabetes Mellitus (DM) or Hypertension (HTN) need no further processing since they
are already a binary feature. However, continuous clinical features such as Systolic Blood
Pressure (SBP) or Heart Rate (HR) would have to be categorised. The categorisation can
be manually decided based on clinical heuristics such as the age cutoff for elderly patients
(> 65 years old) for demographic features or abnormal levels of white blood cells (> 10×103
cells per mL of blood) for laboratory features. Alternatively, the categorisation of continu-
ous clinical features can be done with Generalised Additive Models (GAM) (Barrio et al.,
2013). Another approach would be to categorise the feature according to it’s probability
distribution quantiles (Xie et al., 2020).
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Regardless of the approach chosen for feature value range categorisation, the outcome
is to map input features xij for i = N rows of data and j = M columns of features to
input categories cijk, where cijk is the kth categorical assignment for xij . As the number of
categories vary across j =M columns, maximum number of categories is k = Kj .

Step 3: Modelling with logistic regression

Logistic regression modelling is preferred in Step 3 for the following reasons. The logistic
model is given by

f(c) = ln

(
p(c)

1− p(c)

)
= B0 +

M∑
j=1

Kj∑
k=1

Bjkcjk, (1)

where f(c) is the logistic regression model of categorised input features, c. cjk represents
the vector of categorised input features and Bjk represents the log of odds of each category,
at the jth feature and kth category. Firstly, the beta values of features, i.e., the coefficients
Bjk, in such a model, as shown in (1), can be interpreted as an additive log of odds effect
for every unit change in feature value. As the the input features, x, have been transformed
into input categories c in Step 2, a change in category from 0 to 1 of an input category,
cjk will represent an additive increase in the log of odds by a magnitude equivalent to the
category’s beta value, Bjk. These beta values can thus be used to estimate the integer score
values as in Component A of the clinical score. Secondly, the probability of a class having
a specific adverse outcome is directly modelled. Thus, it allows for the calculation of risk
percentages as in Component B of the clinical score.

Step 4: Create clinical scoring table with beta values

While it is established that beta values of regression model can be used to estimate clinical
scores, beta values are not necessarily integers and non-negative numbers. This violates
the requirements, as set out in Table 1, where scores are non-negative integers. Thus,
Component A of the clinical score is completed when beta values are converted to integer
scores through the following process:

1. Map a unit integer score in a scoring table to the lowest absolute beta value of the
logistic regression model.

2. Beta values are divided by this lowest absolute beta value and rounded to the nearest
whole integer number.

3. To remove negative scoring, the absolute value of the most negative score is added to
all scores.

Step 5: Create clinical score to risk mapping table

Since f(c) is modelled as the log of odds of c, we can take the expit (i.e., logistic sigmoid) of
the product of the unit beta value and incremental integer values between 0 and maximum
possible score to create Component B of the clinical score, the score to risk mapping table.
Alternatively, we can go back to the data and directly measure the ratio of patients with
positive labels amongst groups of patients with different scoring.
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3.2. Uni-ACS clinial score development

Classical clinical score development cannot be applied directly to ML models because, unlike
logistic regression models, ML models have the following limitations:

• Limitation I: They do not model output as a linear function of features, which is a
necessary requirement for generating scores that can be summed.

• Limitation II: They do not have an equivalent beta coefficient to directly quan-
tify feature category’s impact on overall risk, which is a necessary requirement for
generating an integer score for individual feature categories.

In this section, we outline changes to the order of the steps in classical clinical score
development and propose specific algorithmic heuristics to translate ML models into clin-
ical scores. We hypothesize that our proposed method, Uni-ACS, will have the following
attributes:

1. Offers an automatic and model agnostic approach to translating ML models into
clinical scores with the essential Components A and B.

2. Has consistent frame of local and global interpretations across ML models and their
derived clinical scores.

3. Translated clinical scores will preserve most of the underlying ML models’ original
predictive performance.

Step 1: ML Modeling and SHAP application

A desired feature of Uni-ACS is the retainment of the original ML model with the translated
clinical score as an explainable interface of the underlying model. Therefore, instead of
performing the modeling as described in Step 3 of the classical clinical score development
process, we propose ML modeling to be completed in Step 1.

Since clinical scores are developed primarily on top of tabular clinical data, we shall use
the best known existing risk prediction models for tabular clinical data in our experiments:
Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB) and Neural Net-
works (NN). Data is split into training dataset and held out test dataset, in a 70% to 30%
ratio. 5 fold cross validation repeated 10 times is applied on the training dataset to search
for the best set of hyperparameters for each model, based on target model performance of
interest. The best model of each modeling method is applied on the held out test set.

We then apply the well known feature attribution method known as SHAP, which was
described by (Lundberg and Lee, 2017). The SHAP model is given by

f(x) = g(x′) = ϕ0 +
M∑
j=1

ϕjx
′
j , (2)

where the original model, denoted by f(x), can be matched by the explanation model g(x′),
and x′ is the simplified representation of the original input x and ϕj , also known as SHAP
value, is the model output with all simplified inputs x′ turned off.

SHAP is applied to best models for global and local interpretations because SHAP has
the following key characteristics necessary for subsequent clinical score development:
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(a) SHAP is an additive feature attribution method, as shown by (2). This characteristic
resolves issues raised in Limitation I.

(b) We can draw parallels between (1) and (2), where Bjk is analogous to but not equal to ϕj .
This characteristic resolves issues raised in Limitation II.

(c) Explanations of Kernel SHAP, Tree SHAP and linear SHAP are applicable to most
ML models used for tabular clinical data. Deriving clinical scores from SHAP would
therefore allow a unified approach to translating ML models into clinical scores.

Step 2: Feature selection

Similar to Step 1 of the classical clinical development process, features can be handpicked
by clinicians or chosen with a search algorithm. However, as SHAP provides a consistent
approach across all ML methods to rank features, top features from SHAP’s global feature
explanations will be selected for clinical score development.

Step 3: Feature value categorisation

Similar to Step 2 of the classical clinical score development process, we can perform feature
value categorisation based on clinical heuristics, GAM or quantiles. However, with the
application of SHAP, we instead propose to derive these categories cjk from SHAP values
ϕj and feature values xj . We choose this approach because ϕj measures the impact to model
output f(x) with respect to various feature values xj . Thus, by creating categories with ϕj ,
the clinical score will have more accurate representations of the underlying model’s belief. To
illustrate how feature value categorisation can be achieved with this proposed approach, we
plot the partial dependence plot of ϕj against xj and steps 3(i) to 3(iii) in Figure 1. In Step
3(i), a smoothing function such as a cubic spline S (blue line) can be fitted over the SHAP
scatter points (black dots). This was characterised as an explainability curve by (Ong, 2021).
In Step 3(ii), intersections Z can be determined by intersecting the line ϕj = 0 (dash line)
with the spline S. Finally in Step 3(iii), feature value categories C can thus be determined
from intersections Z. Hence, xj can be transformed to cjk. As positive SHAP values imply
increased risk and vice versa, this form of categorisation classifies ranges of feature values
broadly according to their propensity to increase or decrease risk based on signs of the
SHAP values. In the example shown in Figure 1, three such categories, represented by cj1,
cj2 and cj3, were created. The above procedure is summarized in Algorithm 1.

A more complex approach of determining intersections Z and categories C by considering
the concentration of SHAP scatter points or the gradient of the fitted spline can be adopted.
However, this comes at the cost of increased number of Z and C, thus compromising on the
conciseness tenet of a clinical score.

Step 4: Create clinical scoring table with feature aggregate SHAP values

As the beta coefficients, Bjk, were instrumental in the determination of integer scores in
the classical clinical score development process, we discuss how the analogous variable ϕj
can be used to determine integer clinical scores in this step. We have stated previously in
SHAP’s key characteristic (b) that ϕj is analogous to but not equivalent to Bjk. This is
because:
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Figure 1: Partial dependence plot of SHAP value, ϕj , against feature value, xj , annotated
with Steps 3(i) to 3(iii) and Step 4(i).

Algorithm 1 Pseudocode for Steps 3 and 4(i)

/* i and j subscripts represent row and column numbers of input x */

for j ← 1 to M do
S ← Fit spline for ϕj against xj over all i = 1 to i = N inputs; // Step 3(i)

Z ← {zjk| K − 1 intersections between spline S and line ϕj = 0}; // Step 3(ii)

C ← {cjk| K categories derived from Z}; // Step 3(iii)

/* Step 4(i): ϕ value aggregation in K categories for jth feature */

for k ← 1 to K do
ϕjk ← {ϕij | lower ϕ bound of cjk < ϕij ≤ upper ϕ bound of cjk};
I ← total number of ϕij elements in ϕjk;
ilower ← element number of smallest element in ϕjk
iupper ← element number of largest element in ϕjk

ϕ̂jk ←
∑iupper

ilower
ϕij

I ; // Mean applied.

end

end

• Bj are constant coefficients of the logistic regression model. On the other hand, ϕj
is calculated as a function of the original ML model f(x) and the input features x as
described by (Lundberg and Lee, 2017).

• The logistic regression model, in Step 3 of classical clinical score development, is
trained on categorical features cjk generated from the original data. On the other
hand, ϕj are interpretations of the model trained on the original input features x.

8



Uni-ACS

Figure 2: Partial dependence plot of logistic regression model, f(xj), against feature value,
xj , annotated with beta values, Bjk, for categories, cjk.

We plot Figure 2 to illustrate the classical clinical score development’s logistic regression
model’s log odds output f(c) with respect to a single feature’s categories cjk. The model’s
log odds output response consist of step functions, with widths equivalent to the feature
categorisation value ranges and heights equivalent to the beta coefficient values Bjk. Com-
paring ϕj plotted as a blue line in Figure 1 to Bjk plotted as a blue line in Figure 2, we
can observe the differences between ϕj and Bjk as listed above. Hence, we can infer that
a key requirement to building a clinical score is the calculation of a constant explanatory
variable for each feature category cjk. Therefore, in Step 4(i), we propose aggregating ϕj
over the categories previously established in Step 3, as ϕ̂jk. The method for aggregation
can be the mean, mode, median or any statistical representation. In Uni-ACS, mean was
chosen as the method of aggregation. For example shown in Figure 1, ϕ̂j1, ϕ̂j2, ϕ̂j3 were
calculated for categories cj1, cj2 and cj3 and represented as light yellow line. Step 4(i) is
also described in Algorithm 1.

With Steps 3 and 4(i), we can rewrite the SHAP model in (2) as (3) to show a higher
level of equivalency with (1) as follows: Like B coefficients, ϕ̂, set of all ϕ̂jk, are now constant
coefficients of derived categories C, set of all cjk. This give us

f(x) = g(x′) ≈ h(c) = ϕ0 +
M∑
j=1

Kj∑
k=1

ϕ̂jkcjk, (3)

where h(c) is an approximation of the explanation model g(x′), cjk represents the catego-

rized input values x and ϕ̂jk is an aggregated SHAP value representative of the respective
categories.

Therefore, we can perform Step 4(ii), which is the same approach to developing integer
scores as described in Step 4 of the classical clinical score development. The method is
described in Algorithm 2 and the following descriptive sub-steps:
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• Map a unit integer score in the scoring table to the lowest absolute ϕ̂ value.

• ϕ̂ values are divided by this lowest absolute ϕ̂ value and rounded to the nearest whole
integer number.

• To remove negative scoring, the absolute value of the most negative score is added to
all scores.

Algorithm 2 Pseudocode for Steps 4(ii)

/* Step 4(ii): Calculation of integer scores */

ϕ̂ = {ϕ̂jk|1 ≤ j ≤M, 1 ≤ kj ≤ Kj} // jth feature has Kj categories
ˆϕunit ← min(|ϕ̂|) // Find min non-negative ϕ

ψ ← round( ϕ̂
ˆϕunit

) // Round scores to integer

ψ ← ψ −min(ψ) // Ensure non-negative scores

Step 5: Create clinical score to risk mapping table

Contrary to logistic regression models, ML models’ f(x) outputs are not modelled to di-
rectly estimate class probabilities. However, component B of the clinical score requires the
generation of risk estimates for final aggregated integer scores. Hence, we suggest plot-
ting calibration plots of the original underlying ML model to evaluate the clinical score’s
probabilistic outputs. This plot can be seen in the Appendix’s Supplementary Figure 1. Ad-
ditionally, the plot can be used to determine if further calibration is required. Appropriate
calibrators to choose from include sigmoid or isotonic regressors as described in (Niculescu-
Mizil and Caruana, 2005). After calibration is completed as necessary, a post calibration
curve can be plotted, as shown in the Appendix’s Supplementary Figure 2, to ascertain that
model probabilities roughly match fraction of positive labels.

Once we are satisfied that f(x) models have well calibrated probabilities, we calculate
the risk for the discrete integer scores between 0 and maximum possible score. Component
B of the clinical score would thus be completed.

4. Study Design

4.1. Experiments

To test the hypothesis of the Uni-ACS method (refer to Section 3.2), we implemented the
Uni-ACS method and compared it against state of the art clinical scoring methodology,
Risk SLIM, and the classical clinical score development method (refer to section 3.1) as a
baseline. The following key areas of comparisons were made in our experiments:

1. Quantitative comparisons of model predictive performance, such as Area Under Re-
ceiver Operating Curve (AUROC), Area Under Precision Recall Curve (AUPRC) and
accuracy between Uni-ACS and baseline method.
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2. Quantitative comparisons of model predictive performance, such as AUROC and
AUPRC, of ML models prior to and post application of Uni-ACS.

3. Qualitative comparisons of the interpretations of clinical scores derived from Uni-ACS
against current clinical literature. This is to ensure that derived scores have practical
clinical application.

4.2. Cohort

We evaluated Uni-ACS and classical clinical score development on the clinical problem of
predicting mortality and morbidity in sepsis because it is a health problem of global concern,
given its high worldwide incidence of 48.9 million and mortality of 11 million accounting
for 20% of the world’s death in 2017 (Rudd et al., 2020).

Data extraction and inclusion criteria

Data for 2 patient cohorts were extracted from the Medical Information Mart for Intensive
Care (MIMIC) III (Johnson et al., 2016) and MIMIC IV (Johnson et al., 2020) respectively.
Using landmark sepsis studies (Seymour et al., 2016) as reference, we included 2 patient
cohorts treated at Beth Israel Deaconess Medical Center from 2001 to 2012 and from 2008
to 2019 respectively for sepsis based on ICD-9 diagnosis codes, who were older than 18 years
old at point of admission. Outcomes of interest were: Death within 28 days from date of
admission, for 1st cohort and 2nd cohort; Transfer to Intensive Care Unit (ICU) within 2
days from date of admission, for 2nd cohort.

Feature choices and post processing

Chosen features included demographics, past background medical history, laboratory data
such as full blood count, inflammatory markers, renal function test, liver function test,
iron panel, cardiac markers, thyroid function tests, arterial blood gas, microbiological in-
vestigations, Electro-Cardiogram (ECG) and Chest X-Ray (CXR) findings. Non numerical
features indicating feature presence such as Gender (Male or Female) and CXR finding of
pneumonia (Yes or No) were converted into binary features. Missing data were imputed
with Multiple Imputation with Chained Equations (MICE).

5. Results

Descriptive statistics for the 2 cohorts can be found in the Appendix B’s Supplementary
Tables 1, 2 and 3. The best set of hyperparameters for all models, including classical
clinical score and Uni-ACS, found from 5 fold cross validation repeated 10 times applied on
the training dataset can be found in Appendix B’s Supplementary Table 4. Details of how
the top clinical features were selected for construction of the clinical score in Appendix C.

As part of quantitative analysis, predictive performance of LR and the ML models
applied on the held out test set can be found in Table 1. Predictive performance of the
baseline, Risk SLIM, classical clinical score, and the respective Uni-ACS converted clinical
scores applied to the held out test set can be found in Table 2. As Risk SLIM was not built
with any underlying LR or ML model, no performance drop value would be provided.
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Table 1: Comparison of original model performance
Dataset Method AUROC AUPRC Accuracy

MIMICIII
(Mortality)

Logistic Regression (LR) 0.816 (±0.007) 0.754 (±0.009) 0.769 (±0.007)
Gradient Boosting (GB) 0.866 (±0.005) 0.823 (±0.007) 0.789 (±0.006)
Random Forest (RF) 0.851 (±0.008) 0.800 (±0.010) 0.764 (±0.006)
Neural Networks (NN) 0.787 (±0.010) 0.704 (±0.009) 0.735 (±0.007)

MIMICIV
(Mortality)

Logistic Regression (LR) 0.878 (±0.013) 0.427 (±0.029) 0.930 (±0.003)
Gradient Boosting (GB) 0.899 (±0.011) 0.479 (±0.029) 0.933 (±0.004)
Random Forest (RF) 0.900 (±0.010) 0.477 (±0.032) 0.928 (±0.010)
Neural Networks (NN) 0.803 (±0.012) 0.422 (±0.051) 0.889 (±0.025)

MIMICIV
(ICU)

Logistic Regression (LR) 0.898 (±0.009) 0.818 (±0.014) 0.865 (±0.007)
Gradient Boosting (GB) 0.910 (±0.008) 0.837 (±0.013) 0.870 (±0.007)
Random Forest (RF) 0.902 (±0.008) 0.824 (±0.013) 0.856 (±0.006)
Neural Networks (NN) 0.799 (± 0.009) 0.779 (±0.013) 0.801 (±0.008)

Table 2: Comparison of clinical score performance
Dataset Method AUROC AUPRC AUROC drop AUPRC drop

MIMICIII
(Mortality)

Baseline 0.670 (±0.009) 0.536 (±0.010) 17.9% (±1.8%) 28.9% (±2.9%)
Risk SLIM 0.732 (±0.010) 0.645 (±0.013) N.A. N.A.
Uni-ACS on LR 0.694 (±0.009) 0.563 (±0.012) 15.0% (±0.8%) 25.3% (±3.8%)
Uni-ACS on GB 0.745 (±0.010) 0.646 (±0.017) 13.9% (±1.7%) 20.8% (±3.4%)
Uni-ACS on RF 0.750 (±0.009) 0.658 (±0.012) 11.9% (±1.8%) 17.8% (±2.4%)
Uni-ACS on NN 0.590 (± 0.009) 0.486 (±0.015) 25.0% (±3.6%) 31.0% (±4.6%)

MIMICIV
(Mortality)

Baseline 0.785 (±0.016) 0.250 (±0.021) 10.6% (±3.3%) 41.5% (±11.7%)
Risk SLIM 0.801 (±0.015) 0.228 (±0.021) N.A. N.A.
Uni-ACS on LR 0.821 (±0.016) 0.283 (±0.024) 6.55% (±3.24%) 33.7% (±12.4%)
Uni-ACS on GB 0.867 (±0.014) 0.364 (±0.026) 3.56% (±2.78%) 24.0% (±11.5%)
Uni-ACS on RF 0.862 (±0.013) 0.373 (±0.033) 4.22% (±2.67%) 21.8% (±13.6%)
Uni-ACS on NN 0.612 (±0.015) 0.288 (±0.042) 23.8% (±3.36%) 31.8% (±22.0%)

MIMICIV
(ICU)

Baseline 0.846 (±0.007) 0.729 (±0.015) 5.79% (±1.78) 10.8% (±3.55)
Risk SLIM 0.829 (±0.011) 0.690 (±0.016) N.A. N.A.
Uni-ACS on LR 0.857 (±0.010) 0.747 (±0.017) 4.57% (±2.12%) 8.68% (±3.79%)
Uni-ACS on GB 0.880 (±0.008) 0.775 (±0.014) 3.30% (±1.76%) 7.41% (±3.23%)
Uni-ACS on RF 0.880 (±0.009) 0.772 (±0.013) 2.44% (±1.88%) 6.31% (±3.16%)
Uni-ACS on NN 0.601 (±0.010) 0.536 (±0.021) 24.8% (±2.38%) 31.2% (±4.36%)

As part of qualitative analysis, we produce the output clinical scores for prediction
of mortality in septic patients from MIMIC III: (a) Clinical score derived from Uni-ACS
applied on GB in Table 3 and Table 4. (b) Clinical scores derived from baseline and Uni-
ACS applied on other ML models can be found in Appendix D. The output clinical scores
from MIMIC IV analysis can be found on our Github repository.

6. Discussion

6.1. Advantages of Uni-ACS

Performance of Uni-ACS applied on ML models

Uni-ACS clinical scores applied to ensemble decision tree methods RF and GB consistently
produced higher predictive performances compared to Risk SLIM and baseline classical
clinical scores, across both MIMIC III and MIMIC IV cohorts, for the prediction of mortality
and ICU admission, as shown in Table 2. This is possible because a complex ML model can
be used as a base model for construction of the clinical score. Such a procedure is made
possible by: (1) Step 1 of Uni-ACS, where we take a ”model-first” approach to the clinical
score development, with SHAP as the interpretation methodology to derive explainable
variables. (2) Steps 3 and 4 of Uni-ACS, where categorical conversion of input features

12



Uni-ACS

Table 3: Uni-ACS clinical scoring table

Risk factor Score

Length Of Stay (LOS) < 9 days 13
RDW ⩾ 15.5 (%) 7
ICU length of stay ⩾ 6 days 6
Age ⩾ 75 years old 5
Inotropes prescribed 5
Lactate Dehydrogenase ⩾ 208 (U/L) 3
Haptoglobin < 158.8 3
Phosphate ⩾ 3.45 (mmol/L) 2
ICU stays in 1 admission >= 1 5
Albumin < 2.73 (g/dL) 2

Table 4: Uni-ACS score to risk mapping

Score Mortality Risk

23 10%
27 20%
31 30%
34 40%
39 50%
44 60%
48 70%
52 80%
54 90%

x and their associated categorical aggregate SHAP values ϕ̂ can be determined, for the
purposes of clinical score development.

Additionally, the baseline classical clinical score and the Uni-ACS clinical score derived
from logistic regression model had marginal differences in predictive performance. This is a
reassuring outcome as it shows that Uni-ACS applied on the logistic regression model can
reproduce the results of the baseline method, despite the changes to algorithm heuristics as
described in section 3.2.

Reduction in original ML model’s performance

LR and ML models’ performances dropped after conversion to clinical scores. This is
expected as classical and Uni-ACS clinical score development reduces model complexity in
the following ways: (1) For both classical and Uni-ACS clinical score development, only top
features of models are selected for clinical score conversion. (2) In classical clinical score
development Step 2 and Uni-ACS Step 3, input features xij are converted into categorical
features cijk, albeit through different algorithmic heuristics. (3) In Uni-ACS Step 4(i),

further complexity is lost through the conversion of ϕj into ϕ̂jk for categorised inputs cjk.
(4) In classical clinical score development Step 4 and Uni-ACS Step 4(ii), beta coefficients
Bjk and SHAP value aggregates ϕ̂jk are converted into non-zero integer clinical scores. The
process includes division and rounding of numbers to integers, which precipitates further
loss of model information. (5) Possible scores of a clinical score take on a finite set number
of integer values. On the other hand, the original model’s output can take on a theoretically
infinite number of possible values from 0 to 1 or from −∞ to +∞, depending on whether
probability or log of odds is the output.

Excluding Uni-ACS applied to NN, we assert that Uni-ACS clinical scores’ performance
drops post conversion were reasonable, when compared with the baseline method. For
instance, across all datasets and outcomes, Uni-ACS clinical scores’ AUROC drop were in
the range of 2.44% to 15.0%, compared to baseline of 5.79% to 17.9%. The AUPRC drop
were in the range of 6.31% to 33.7%, compared to baseline of 10.8% to 41.5%. Furthermore,
despite the drop, the performance of Uni-ACS on the various models were still comparable
to the performance of direct optimization methods, such as Risk SLIM.

For the unique case of Uni-ACS applied on NN where the performance drop was the
worst (AUROC drop of 23.8% to 25.0% and AUPRC drop of 31.0% to 31.8%), the SHAP
values were calculated with Kernel SHAP. As this is an exact computation approach, the
number of data samples used to compute the SHAP explanations of the NN were reduced
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to save compute resource and decrease compute time. Nevertheless, this shows a proof of
concept that Uni-ACS is model agnostic and can be applied to NN models.

Uni-ACS derived clinical score correlates well with clinical knowledge

We further made a qualitative comparison of Uni-ACS clinical score derived from the GB
model derived from the MIMIC III dataset (shown in Tables 3 and 4), with respect to
current clinical literature. Firstly, age, number of recurrent ICU admissions, prolonged
ICU LOS and prolonged hospital LOS were known predictors of adverse outcomes in sepsis
(Yang et al., 2010). Secondly, while heart rate and blood pressure (variables found in the
APACHE II (Knaus et al., 1985) and SIRS (Bone et al., 1992) scores) were not seen in the
scoring table, the number of inotropes (medications used to moderate heart rate and increase
blood pressure) was found to be a strong indicator of adverse outcome. In other words,
the clinical score concurred that patients with poor hemodynamic function have a higher
risk of adverse outcome. Finally, although inflammatory markers such as white blood cells,
C-reactive protein and procalcitonin were not seen in the scoring table, alternate blood
investigation markers indicating severe sepsis such as Lactate Dehydrogenase (marker of
organ hypoperfusion during sepsis, studied by (Lu et al., 2018)) and haptoglobin (protective
in high levels during sepsis, studied by (Janz et al., 2013)) were found to have significant
contributions toward adverse outcome.

Consistency between Uni-ACS score and underlying ML model

To prove empirically that Uni-ACS derived clinical scores’ explanations were consistent with
underlying ML models’ explanations, we first plot the original ML model’s SHAP response,
ϕj , against feature values, xj , as a blue line in Figure 3. We further overlay the plot of

the clinical scores, ϕ̂j , against feature values, xj , as a yellow line. We make this plot for
each feature of the Uni-ACS clinical score, shown in Table 3. We can now observe that the
clinical scores’ explanations were consistent with the models’ explanations. For instance,
the most important feature, LOS, represented by the first panel in Figure 3 and the first
line in Table 3, the original ML model’s belief of a drop in risk attribution, ϕj , at LOS of
9 to 10 days was captured as ”LOS < 9 days for 13 points” in the clinical score. Similar
patterns of consistency could be observed for the other 9 panels in Figure 3, corresponding
to the other 9 features in Table 3.

Understanding risk from Uni-ACS and deriving possible discrete treatments

With empirical proof of consistency, clinical scores can be said to retain the underlying ML
models’ understanding of pathology. We can therefore infer disease patterns and determine
possible discrete treatments accordingly. For instance, Albumin, represented by the last
panel in Figure 3, could be seen to have a transition from high to low risk from 2 to 3
g/dL based on the underlying ML model’s SHAP values, ϕj . This was reflected in the
Uni-ACS clinical score, in the last line of Table 3, as a score of 3 for Albumin values higher
than 2.73g/dL. Clinicians may opt to use this threshold to determine hypoalbuminemia as
a driving cause for adverse outcome and initiate treatment to replenish albumin reserves in
order to reduce risk.
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Figure 3: Plots of (A) SHAP outputs of original ML model, ϕj , against feature values, xj
(light blue dots for original SHAP points, blue line for best fit of SHAP points)
and, (B) Clinical score, ϕ̂j , against feature values, xj (yellow line).

6.2. Limitations

Firstly, Uni-ACS was applied on ML models trained on 2 patient cohorts’ data for the
prediction of mortality and morbidity in sepsis. Ideally, we would like to show that Uni-
ACS can be generalised by testing it with several different types of diseases. Secondly,
although we strive to completely automate the clinical scoring conversion process, there are
edge cases and few points of possible failure, which might require manual review of data
and tuning of specific method parameters. For instance, default spline fitting parameters
might overfit the ϕj values in Step 3. This might lead to unrealistic number of intersections
Z and categories C. To circumvent the problem, the ϕj values and the fitted spline would
have to be plotted and visually inspected to adjust spline parameters. Another instance
of automation failure is when the minimum absolute aggregate ϕjk value in Step 4 is too
small relative to the other aggregate ϕ values. This will result in a large clinical scoring
range, which increases the complexity of the clinical score. While the method is by default
opinionated and automatic, users can opt for a manual approach to fine tuning the clinical
score.

6.3. Future work

While patient risk stratification clinical scores were developed on binary disease outcomes
in this paper, clinical scores can also be developed to estimate patient survival over longi-
tudinal periods with the proportional hazards model using Cox regression. (Kvamme et al.,
2019) and (Spooner et al., 2020) showed ensemble tree based and neural network approaches
of using ML to perform Cox Regression. By making modifications to Uni-ACS, we can the-
oretically extend Uni-ACS to estimate clinical scores for survival analysis. Finally, while we
will make the software open source through Github, we hope to further refine the algorithm,
resolve the aforementioned limitations and develop it into a full package.
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7. Conclusion

We showed that Uni-ACS is a model agnostic approach to converting ML models into clin-
ical scores, a tool that is well established within the medical community. Additionally, we
demonstrated that Uni-ACS applied on ML models can retain a reasonable portion of the
underlying model’s predictive performance. Our experiments also showed that Uni-ACS
applied on ML models have superior predictive performance compared to the classical clin-
ical score development approach. Finally, Uni-ACS delivers a consistent frame of reference
for clinicians when doing patient risk stratification both at bedside and at machine with
clinical decision support.
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Appendix A. Supplementary material for Methods

S. Table 1: TIMI’s clinical scoring table

Risk factor Score

Age 65 to 74yo 2
Age ⩾ 75yo 3
DM, HTN or Angina 1
SBP < 100 3
HR > 100 2
Killip II-IV 2
Weigh < 67kg 1
Anterior STE or LBBB 1
Time to Rx 1

S. Table 2: TIMI’s score to risk mapping

Score Mortality Risk

0 0.8%
1 1.6%
2 2.2%
3 4.4%
4 7.3%
5 12.4%
6 16.1%
7 23.4%
8 26.8%
>8 34.9%
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(a)

(b)

S. Fig. 1: Pre-calibration plots: (a) Fraction of positive label against predicted probability,
(b) Counts of positive label against predicted probability.
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(a)

(b)

S. Fig. 2: Post-calibration plots: (a) Fraction of positive label against predicted probability,
(b) Counts of positive lable against predicted probability.
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Appendix B. Supplementary material for Results

S. Table 1: Descriptive Statistics of MIMIC III Sepsis Mortality Cohort

Feature
Total

(n=4555)

Alive or Death
after 28 days

(n=2820)

Death within
28 days (n=1735)

P-value

Demographics
Age 67.0 (16.2) 65.1 (16.7) 70.1 (15.0) < 0.001
Gender 2526 (55.5%) 1530 (54.3%) 996 (57.4%) 0.041
Co-morbids
Hypertension 1660 (37.5%) 1053 (37.6%) 607 (37.3%) 0.896
Hyperlipidemia 178 (4.0%) 137 (4.9%) 41 (2.5%) < 0.001
Diabetes 190 (6.5%) 191 (6.8%) 99 (6.1%) 0.379
Hospital parameters
LOS 15.3 (17.1) 15.9 (16.9) 14.3 (17.5) 0.002
ICU LOS 7.2 (9.8) 6.9 (9.9) 7.8 (9.7) 0.003
Full Blood Count
Hemoglobin 11.3 (2.2) 11.4 (2.2) 11.0 (2.2) < 0.001
Hematocrit 33.9 (6.4) 34.1 (6.2) 33.4 (6.6) < 0.001
RDW 15.8 (2.4) 15.4 (2.2) 16.6 (2.6) < 0.001
Inflammatory Markers
White blood cells 14.2 (12.0) 14.1 (11.6) 14.4 (12.7) 0.527
Neutrophils (%) 77.6 (17.5) 78.1 (16.5) 76.7 (18.9) 0.009
Lymphocyte (%) 10.8 (11.8) 10.7 (11.6) 10.9 (12.2) 0.601
Basophils (%) 0.2 (0.4) 0.2 (0.5) 0.2 (0.4) 0.263
Eosinophils (%) 0.9 (2.4) 0.8 (2.0) 0.9 (2.9) 0.346
Monocytes (%) 4.6 (4.7) 4.5 (4.7) 4.7 (4.7) 0.128
C-Reactive Protein 108.4 (97.3) 102.4 (95.4) 124.9 (100.9) 0.009
Coagulopathy
Platelet 242.5 (151.4) 251.4 (151.5) 227.3 (150.0) < 0.001
PT 18.0 (11.1) 17.1 (9.9) 19.5 (12.7) < 0.001
PTT 36.5 (19.7) 34.6 (17.4) 39.6 (22.6) < 0.001
D-Dimer 4727.0 (4519.6) 4137.8 (4152.0) 5291.7 (4784.4) 0.001
Fibrinogen 443.4 (235.8) 481.1 (231.8) 383.6 (229.7) < 0.001
Fibrin 47.0 (135.8) 43.8 (137.6) 49.6 (134.5) 0.538
Renal Panel
Sodium 137.5 (6.6) 137.5 (6.0) 137.4 (7.4) 0.425
Potassium 4.4 (1.0) 4.3 (0.9) 4.5 (1.0) < 0.001
Creatinine 2.2 (12.1) 1.9 (1.8) 2.7 (19.4) 0.103
Calcium 8.2 (1.0) 8.2 (1.0) 8.3 (1.1) 0.007
Magnesium 1.9 (0.5) 1.8 (0.4) 2.0 (0.5) < 0.001
Phosphate 3.8 (1.7) 3.5 (1.5) 4.2 (1.8) < 0.001
Arterial Blood Gas
pH 6.3 (1.1) 6.3 (1.1) 6.4 (1.0) 0.001
pCO2 41.5 (14.4) 41.4 (13.5) 41.5 (15.5) 0.825
pO2 131.8 (103.7) 131.0 (101.2) 132.8 (107.1) 0.584
ECG
STEMI 293 (6.9%) 170 (6.5%) 123 (7.8%) 0.126
AF 1154 (27.4%) 598 (22.7%) 556 (35.0%) < 0.001
CXR
Pneumonia findings 2507 (71.5) 1514 (69.0) 993 (75.7) < 0.001
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S. Table 2: Descriptive Statistics of MIMIC IV Sepsis Mortality Cohort

Feature
Total

(n=4555)

Alive or Death
after 28 days

(n=7155)

Death within
28 days (n=535)

P-value

Demographics
Age 69.3 (17.2) 68.9 (17.4) 74.7 (14.2) < 0.001
Gender 3589 (46.7%) 3283 (45.9%) 306 (57.2%) < 0.001
Caucasian 5360 (69.7%) 5006 (70.0%) 354 (66.2%) 0.073
African 1204 (15.7%) 1130 (15.8%) 74 (13.8%) 0.253
Hispanic 349 (4.5%) 332 (4.6%) 17 (3.2%) 0.144
Other races 623 (8.1%) 572 (8.0%) 51 (9.5%) 0.240
Unknown race 154 (2.0%) 115 (1.6%) 39 (7.3%) < 0.001
Vital Signs
Temperature, min 97.3 (6.7) 97.5 (6.1) 95.6 (12.2) < 0.001
Temperature, max 99.3 (10.7) 99.4 (10.9) 98.2 (8.5) 0.002
RR, min 16.5 (3.0) 16.4 (2.8) 17.7 (4.6) < 0.001
RR, max 22.3 (6.2) 21.9 (5.9) 26.6 (7.4) < 0.001
HR, min 78.9 (16.8) 78.3 (16.4) 86.5 (20.9) < 0.001
HR, max 97.1 (20.9) 96.3 (20.4) 107.4 (24.1) < 0.001
SBP, min 111.2 (23.2) 112.3 (22.8) 96.5 (23.1) < 0.001
SBP, max 140.6 (23.8) 141.3 (23.6) 131.1 (24.4) < 0.001
DBP, min 57.8 (13.5) 58.3 (13.3) 50.7 (14.3) < 0.001
DBP, max 86.5 (199.1) 87.3 (206.3) 76.1 (17.6) < 0.001
Co-morbids
DM (No Complications) 1816 (23.6%) 1668 (23.3%) 148 (27.7%) 0.026
DM (complications) 572 (7.4%) 540 (7.5%) 32 (6.0%) 0.213
IHD 719 (9.3%) 635 (8.9%) 84 (15.7%) < 0.001
CHF 1760 (22.9%) 1571 (22.0%) 189 (35.3%) < 0.001
Stroke 617 (8.0%) 550 (7.7%) 67 (12.5%) < 0.001
AIDS 86 (1.1%) 82 (1.2%) 3 (0.6%) 0.290
Full Blood Count
Hemoglobin 10.9 (2.0) 10.9 (2.0) 10.1 (2.1) < 0.001
Hematocrit 33.3 (6.0) 33.4 (5.9) 31.8 (6.5) < 0.001
RDW 15.0 (2.1) 14.9 (2.0) 16.5 (2.7) < 0.001
White blood cells 10.4 (8.5) 10.0 (7.4) 14.7 (16.9) < 0.001
Platelet 232 (123.4) 234 (121.4) 208.8 (145.8) < 0.001
Biochemistry
Urea Nitrogen 25.7 (20.4) 24.5 (19.0) 42.0 (29.6) < 0.001
Glucose 128.6 (64.9) 128.0 (64.3) 137.5 (71.9) 0.003

S. Table 3: Descriptive Statistics of MIMIC IV Sepsis ICU Cohort

Feature
Total

(n=7690)
No ICU admission

(n=5623)
ICU admission

(n=2067)
P-value

Demographics
Age 69.3 (17.2) 69.0 (17.6) 70.1 (16.1) 0.008
Gender 3589 (46.7%) 2530 (45.0%) 1059 (51.2%) < 0.001
Caucasian 5360 (69.7%) 3951 (70.3%) 1409 (68.2%) 0.081
African 1204 (15.7%) 941 (16.7%) 263 (12.7%) < 0.001
Hispanic 349 (4.5%) 257 (4.6%) 92 (4.5%) 0.872
Other races 623 (8.1%) 443 (7.9%) 180 (8.7%) 0.256
Unknown race 154 (2.0%) 31 (0.6%) 123 (6.0%) < 0.001
Vital Signs
Temperature, min 97.3 (6.7) 97.8 (4.0) 96.2 (11.1) < 0.001
Temperature, max 99.3 (10.7) 99.4 (11.9) 99.2 (6.6) 0.346
RR, min 16.5 (3.0) 16.2 (2.3) 17.3 (4.3) < 0.001
RR, max 22.3 (6.2) 20.8 (4.9) 26.2 (7.3) < 0.001
HR, min 78.9 (16.8) 76.7 (15.1) 84.9 (19.6) < 0.001
HR, max 97.1 (20.9) 93.5 (18.4) 106.8 (23.9) < 0.001
SBP, min 111.2 (23.2) 116.2 (21.1) 97.7 (23.1) < 0.001
SBP, max 140.6 (23.8) 143.3 (22.8) 133.2 (24.8) < 0.001
DBP, min 57.8 (13.5) 60.1 (12.7) 51.6 (13.7) < 0.001
DBP, max 86.5 (199.1) 89.2 (232.2) 79.3 (27.2) 0.002
Co-morbids
DM (No complications) 1816 (23.6%) 1242 (22.1%) 574 (27.8%) < 0.001
DM (Complications) 178 (4.0%) 137 (4.9%) 41 (2.5%) < 0.001
IHD 719 (9.3%) 436 (7.8%) 283 (13.7%) < 0.001
CHF 1760 (22.9%) 1024 (18.2%) 736 (35.6%) < 0.001
Stroke 617 (8.0%) 387 (6.9%) 230 (11.1%) < 0.001
AIDS 86 (1.1%) 59 (1.0%) 27 (1.3%) 0.048
Full Blood Count
Hemoglobin 10.9 (2.0) 11.0 (2.0) 10.4 (2.2) < 0.001
Hematocrit 33.3 (6.0) 33.7 (5.7) 32.3 (6.5) < 0.001
RDW 15.0 (2.1) 14.7 (2.0) 15.6 (2.4) < 0.001
White blood cells 10.4 (8.5) 9.4 (7.5) 13.1 (10.2) < 0.001
Platelet 232 (123.4) 236.4 (118.8) 220.7 (134.5) < 0.001
Biochemistry
Urea Nitrogen 25.7 (20.4) 22.9 (17.2) 33.2 (25.8) < 0.001
Glucose 128.6 (64.9) 122.8 (56.2) 144.4 (82.0) < 0.001
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S. Table 4: Hyperparameters of the best LR and ML models found from 5 fold cross vali-
dation repeated 10 times

Model Hyperparameters Software

Logistic Regression solver=”liblinear”, penalty=”L1”, random state=7 Scikit-Learn

Gradient Boosting
n estimators=100, max depth=5, subsample=1.0,

min samples split=2, min samples leaf=1,
criterion=”friedman mse”, random state=7

Scikit-Learn

Random Forest
n estimators=100, max depth=7, min samples split=2,

min samples leaf=1, criterion=”gini”,
random state=7

Scikit-Learn

Neural Networks

Customised MLP NN of 2 layers:
1st layer 113 nodes, 2nd layer 100 nodes,
criterion=”Binary Cross Entropy Loss”,
optimizer=”Stochastic Gradient Descent”

Pytorch

Classical Clinical Score
(Baseline)

top n features=10,
feature categorisation method=”GAM”

Generalised Additive Method as proposed by
Barrio et al. (2013) is the most automatic feature
categorisation method for the classical approach

N.A.

Uni-ACS applied
on ML model

top n features=10,
feature categorisation method=”novel”

”novel” refers to the feature categorisation
method as proposed in section 3.2

N.A.

Risk SLIM
max coefficient=5, max L0 value=5,

max offset=50, c0 value=1e-6
N.A.
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Appendix C. Supplementary material for feature selection results

S. Fig. 1: Feature selection for Uni-ACS clinical score construction. The threshold for most
parsimonious set of clinical features was selected at n=10 by determining the
minimum required number of top features to create a model with AUROC 0.8 or
higher.
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Appendix D. Supplementary material for clinical scores derived from
MIMIC III sepsis mortality cohort

S. Table 1: Classical Clinical Scoring

Risk factor Score

15.8 ⩽ RDW < 30.0 (%) 4
1034 ⩽ LDH < 20933 (U/L) 4
93.4 ⩽ Urea Nitrogen < 204.2 (mg/dL) 3
Lactate ⩾ 16.0 (mmol/L) 3
Phosphate ⩾ 0.674 (mmol/L) 4
PTT ⩾ 64 (s) 3
Yeast present in blood cultures 3
Antifungals prescribed 3
Inotropes prescribed 3
Immunosuppressant prescribed 2

S. Table 2: Classical Clinical Score to Risk

Score Mortality Risk

1 10%
3 20%
5 30%
7 40%
8 50%
10 60%
11 70%
12 80%
14 90%

S. Table 3: Risk SLIM Clinical Scoring

Risk factor Score

LDH (U/L) 5
RDW (%) 4
Urea Nitrogen (mg/dL) 3
Lactate 3
Number of inotropes 4
PTT (s) 0
Yeast 0
Antifungals prescribed 0
Phosphate (mg/dL) 0
Immunosuppressant prescribed 0

S. Table 4: Risk SLIM Score to Risk

Score Mortality Risk

1 12%
2 27%
3 50%
4 73%
5 88%
6 95%

S. Table 5: Uni-ACS LR Clinical Scoring

Risk factor Score

LOS (days) ≤ 15.5 7
Inotropes > 0 4
Age > 67.3 4
Bicarbonate > 22.7 3
Chloride > 103 4
Albumin ≤ 2.96 2
Sodium ≤ 138 2
ICU LOS > 7.45 3
Bilirubin, Indirect > 1.33 4
RDW > 15.6 (%) 3

S. Table 6: Uni-ACS LR Score to Risk

Score Mortality Risk

10 10%
16 30%
22 50%
28 70%
34 90%
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S. Table 7: Uni-ACS RF Clinical Scoring

Risk factor Score

LOS ≤ 7.7 (days) 5
RDW > 15.5 (%) 6
Uric acid (mg/dL) > 6.69 5
Vitamin B12 > 1120 (pg/mL) 5
Haptoglobin ≤ 142 (mg/dL) 5
Fibrinogen, Functional ≤ 355 (mg/dL) 5
Inotropes > 0 4
Phosphate > 3.81 (mg/dL) 3
Potassium > 4.29 (mmol/L) 3
Age > 66 (years old) 2

S. Table 8: Uni-ACS RF Score to Risk

Score Mortality Risk

8 10%
16 20%
24 30%
31 50%
39 70%
43 90%

S. Table 9: Uni-ACS NN Clinical Scoring

Risk factor Score

Inotropes ≥ 2 2
LOS < 5 (days) 1
Immunosuppresant prescribed 1
Hyperlipidemia 1
Nucleated Red Cells found 2
Bilirubin, Indirect ≥ 63 (mg/dL) 1
Creatinine ≥ 3.2 (mg/dL) 1
Calculated Bicarbonate (mEq/L) ¡ 14.6 1
Ferritin ≥ 310 (ng/mL) 1
No. of ICUs ≥ 3 1

S. Table 10: Uni-ACS NN Score to Risk

Score Mortality Risk

1 10%
3 30%
6 50%
10 70%
12 90%
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