
Proceedings of Machine Learning Research 182:1–14, 2022 Machine Learning for Healthcare

A Multi Instance Learning Approach for Critical View of
Safety Detection in Laparoscopic Cholecystectomy

Yariv Colbeci yariv@theator.io

Maya Zohar maya@theator.io

Daniel Neimark danieln@theator.io

Dotan Asselmann dotan@theator.io

Omri Bar omri@theator.io

Theator Inc., Palo Alto, CA, USA.

Abstract

Surgical procedures have a clear designated goal, which makes the art of performing surgery
a task-oriented action. The performing surgeon follows specific workflow steps that describe
the actions needed to reach the surgery goal. In ectomy procedures, such as Cholecystec-
tomy and Appendectomy, the goal is to dissect and remove a specific organ. Safety measures
are set to prevent injuries, and the surgeon needs to follow protective methods to avoid
misidentification. In Laparoscopic Cholecystectomy (LC), this method is known as Critical
View of Safety (CVS). This work illustrates that machine learning can detect CVS accu-
rately enough to be used routinely in the clinical setting, both for educational purposes and
in other assessment scenarios. We formulate CVS detection as a supervised Multi Instance
Learning (MIL) problem and propose an attention-based MIL model that is trained and
evaluated on more than 2,000 surgical videos. It achieves 82.6% mean unweighted accuracy
in detecting LC CVS criteria and 84.2% accuracy in the final task of CVS detection.

1. Introduction

Laparoscopic surgeries are minimally invasive surgeries performed in the abdominal or pelvic
cavities with the aid of a video feed coming from an endoscope. Laparoscopic Cholecys-
tectomy (LC) is a common procedure performed in this approach, with nearly one million
procedures performed annually in the United States alone (Pucher et al., 2018).

Despite the substantial benefits of laparoscopy, such as reduced pain and a shorter
hospitalization period (Fuchs, 2002), one drawback of this technique is that since a live
video feed is used to provide the surgeon with the field of view, it also limits the visual
depth and affects the visual perception.

A severe intraoperative complication of LC, mostly happens due to visual perceptual
illusion or misidentification, is Bile Duct Injury (BDI), occurring in about 0.4% of the cases
and increasing mortality rate by about 2% (Way et al., 2003; Pucher et al., 2018).

Critical View of Safety (CVS) is a method first introduced in 1995 (Strasberg et al.,
1995) and adopted by surgeons to safely perform LC procedures and avoid misidentification
of the biliary tracts (Nassar et al., 2021). In order to correctly identify the bile duct
structures before division, the surgeon must obtain a clear view of the area and make sure
three mandatory criteria are met (Fig. 1). First, the hepatocystic triangle must be cleared
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Figure 1: An example of a complete Critical View of Safety when all criteria were achieved.
A. Liver. B. Gallbladder. C. Cystic Duct - the left structure. D. Cystic Artery
- the right structure. The white dashed line represents the hepatocystic triangle
that should be cleared of fat and tissues (first criterion). The lower part of the
gallbladder is separated from the liver (second criterion), and only two structures
enter the gallbladder (third criterion).

of fat and fibrous tissue (clean triangle). Second, the lowest part of the gallbladder should
be separated from the liver (gallbladder separation). And third, only two structures should
be seen entering the gallbladder (two structures). Correctly performed, CVS execution
significantly lowers the incidence of BDI and intraoperative complications (Sgaramella et al.,
2021; Strasberg and Brunt, 2010).

Novel AI techniques, such as Computer Vision algorithms, can improve surgical practice
and patient outcomes (Maier-Hein et al., 2017). Integrating automatic video analysis meth-
ods into the routine work of surgeons can contribute significantly to educational purposes,
such as preoperative preparation and postoperative insights and debriefing.

Furthermore, real-time detection of intraoperative events can support surgeons’ decision-
making during critical phases of the operation and provide better anatomical understanding
and orientation. In addition, reliable agnostic models trained on a variety of procedures are
unbiased to the different perspectives of surgeons. Thus, using these models for real-time
decision support can result in better outcomes and reduce the variability between surgeons.

CVS is an important milestone in LC, making it a valuable task for automation using
machine learning. Supporting the surgeon workflow with automated detection of CVS in
the future would improve surgical practice and help assess CVS achievement, potentially
resulting in fewer mistakes or misidentifications that might lead to bile duct injuries.

In this work, we suggest a new method for CVS detection. We formulate the problem
as an explicit criteria classification task to infer CVS achievement. We set heuristic rules
based on surgical steps annotations for time frame localization and use an attention-based
Multi Instance Learning (MIL) model with a multi-label classifier for criteria detection.
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We train and test our method on a large-scale database of more than 2,000 annotated
LC videos. This study aimed to develop a method that can provide accurate detection of
the CVS time frame in different scenarios and reliable predictions of each CVS criterion.

Generalizable Insights about Machine Learning in the Context of Healthcare

This study focuses on the challenging task of identifying the Critical View of Safety in La-
paroscopic Cholecystectomy with machine learning. Although CVS has a significant clinical
value for surgery and is done routinely in the operating room (OR), it still lacks data and
studies exploring how to identify its criteria automatically. Using machine learning for CVS
detection is an example of an important key moment or milestone that has significant value
to the clinical community but is limited by data and has a complex labeling process. Thus,
limiting the ability to develop and explore ML-based methods. In this work, we propose a
new method for CVS detection. Our approach builds on top of the latest developments in
computer vision and applies attention-based networks that significantly improve previous
studies’ results. We train and evaluate our approach on a large-scale dataset and propose
a relatively simple method that does not require a complex labeling process. We evaluate
our method on surgical videos curated from several medical centers, which supports our ap-
proach’s generalization and robustness. Finally, ML-based applications in the medical field
are often referred to as black boxes, making it difficult for physicians to understand and
interpret the results. In contrast, our method uses an attention-based MIL, which allows
us to illustrate the specific frames the model focuses on during the prediction process (Fig.
4 and Appendix). Therefore significantly add to the interpretability of the model.

2. Related Work

Extensive research is being conducted in the field of surgical video analysis (Bar et al., 2020;
Jin et al., 2018; Yu et al., 2019; Zohar et al., 2020). Previous studies demonstrated the use of
computer vision techniques for the foundational task of surgical step recognition, i.e., parsing
a surgical video into key segments that represent the surgeon’s workflow (Neimark et al.,
2021b; Hashimoto et al., 2019; Twinanda et al., 2016). These studies lay the foundations
for more complex tasks like CVS detection, which relies on pre-detecting the specific step
the surgeon is focusing on.

A recent work by Mascagni et al. (2021) introduced a multi-label classification method
for LC CVS criteria detection in static images captured from videos when CVS was achieved.
Their approach requires accurate anatomical segmentation of the hepatocystic anatomy as
input and manually selected frames that include CVS criteria. The results reported set a
baseline for CVS detection, demonstrating the ability to accurately detect CVS in images
with mean unweighted accuracy of 71.4%. However, this approach will be hard to scale and
use in production scenarios where segmentation and specific frames are absent.

Our method relies on transfer learning which is widely used in image and video recog-
nition tasks (Girshick et al., 2014; Carreira and Zisserman, 2017; Yosinski et al., 2014).
Recent studies also applied transfer learning in the surgical domain. They demonstrated
the effectiveness of taking pre-trained models, trained on one procedure type, and using
them to fine-tune on different procedure types (Neimark et al., 2021b). Here, we suggest
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that feature representations extracted by a model pre-trained on surgical step recognition
can be successfully applied to other surgical-related tasks, such as CVS detection.

A multi instance learning approach has been used before for several medical-related
problems. In Sadafi et al. (2020), MIL is used to classify blood cell disorders and helps
with the complicated task of manually labeling all cells in an image. The work of Pal et al.
(2021) developed a new sparse attention-based MIL algorithm for abnormal cell detection
in cervical histopathology images. A recent work introduced DEEMD, a computational
pipeline using deep neural networks within a multi instance learning framework. DEEMD
uses MIL to identify putative treatments effective against SARS-CoV-2 based on morpho-
logical analysis in images (Saberian et al., 2021). Another example of using MIL in the
medical field is DeepLION, which shows accurate cancer detection by modeling the T cell
receptors correlation and using MIL to assign an adjusted weight for each receptor during
the prediction process (Xu et al., 2022).

3. Cohort

3.1. Dataset

Our dataset contains 2,223 videos of LC, curated from 12 different medical centers (see
Table 6 in the Appendix for demographics information). Each video undergoes a meticulous
annotation and validation process by a team of specialists trained to annotate the surgical
workflow. The annotation process was validated by a group of surgeons to ensure high
agreement with our annotation (Korndorffer Jr et al., 2020). The dataset was manually
annotated with surgical steps and CVS, including time frame and CVS criteria (Fig. 1).

The dataset was randomly divided into three subsets (Table 3.1); 25% (556) of the
videos for the test set, 20% (333) of the remaining for the validation set, and the rest for
the training set (1334).

Table 1: CVS dataset. Each column presents the number of positive and negative samples
of each criterion and its related percentage. The right column shows the number
of total CVS samples.

Clean Triangle Gallbladder Separation Two Structures CVS
Neg Pos Neg Pos Neg Pos Neg Pos

Training
1122

(67%)
561

(33%)
1009

(60%)
674

(40%)
1377

(82%)
306

(18%)
1458

(87%)
225

(13%)

Validation
305

(70%)
136

(30%)
281

(64%)
160

(36%)
366

(83%)
75

(17%)
384

(87%)
57

(13%)

Test
365

(57%)
279

(43%)
340

(53%)
304

(47%)
467

(73%)
177

(27%)
505

(78%)
139

(22%)
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Figure 2: A. Distribution of CVS segment length. B. Distribution of the time delta between
cystic structures division and CVS end time.

4. Methods

4.1. Problem formulation

We mapped out CVS detection to three separate sub-tasks: (1) Time frame localization, (2)
Binary classification of CVS (i.e., achieved or not achieved), and (3) Multi-label classification
of the three criteria.

4.2. Implementation details

We define heuristic rules to tackle the localization problem, derived from the structured
procedure workflow and based on statistics drawn from our dataset. A correct CVS appears
right before the division of the cystic structures (Strasberg and Brunt, 2010). We used
surgical steps annotations to locate the division step start time and then extracted a clip
that ends when the division starts. As CVS mostly appears in a scope of 30 seconds before
the division (Fig. 2B), with an average duration of 10 seconds (Fig. 2A), we chose these
values as our region of interest.

For the criteria classification task, we used a similar architecture to the one suggested
in VTN (Neimark et al., 2021a). With ViT (Dosovitskiy et al., 2020) as a feature extractor
and replacing the Longformer with a multi-label classifier that detects all three criteria
simultaneously. We initialized the network with pre-trained model weights, trained on the
LC steps recognition task (Bar et al., 2020). To discern whether CVS was achieved or not,
we first need to determine which criteria were achieved. Thus, we focused on exploring
different methods for CVS criteria detection.

The interesting work of Mascagni et al. (2021) shows promising results for CVS detec-
tion. However, it requires that the dataset be annotated with anatomical segmentation and
relevant frames for CVS detection. This is not feasible for a large-scale dataset like the one
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Figure 3: High-level description of the attention-based MIL architecture for CVS criteria
detection. The network includes three modules: (1) ViT backbone, (2) An atten-
tion block, and (3) a multi-label classification head.

described in our work. In the absence of other CVS detection methods to compare to, and
in order to allow a fair comparison between our suggested approach and other ML-based
methods, we chose to include different types of models, such as MLP and LSTM, as a
baseline.

Multilayer Perceptron (MLP). We used a small MLP network consisting of two linear
layers as a baseline. The first layer reduces the dimension of each feature vector to 256,
followed by flattening the temporal dimension into a single dimension. The second layer is
a 3 class classification layer. The learning rate was set to 0.0005.

Long Short-Term Memory (LSTM). We used an LSTM network (Goodfellow et al.,
2016) with a hidden dimension of size 256. We tried two aggregation functions applied to
the output; mean, and take last, with a learning rate of 0.2 and 0.002, respectively. The
aggregation function reduces the temporal dimension to one vector of size 256, which is the
input to the classification head. mean refers to the average vector across the temporal axis,
and take last is the vector representing the last second of the sequence.

Multi Instance Learning (MIL). This method refers to the case in which a single label
is assigned to a bag of instances. Meaning, if there is at least one positive instance in the bag,
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Figure 4: Demonstrating the frames the MIL model focuses on for classification. A. At-
tention heatmap aligned with the corresponding video frames. A warmer color
represents a higher attention value. To create this figure, we subsampled the
frames, taking 15 frames out of 30. B. The frame with the highest attention
value (frame 9). C. The frame with the lowest attention value (frame 15). Addi-
tional examples are provided in the appendix.

it will be labeled as positive, and if all the instances in the bag are negative, it will be labeled
as negative. This definition makes MIL ideal for the task of CVS criteria detection, as the
input is a sequence of 30 frames, labeled as a single input sample, and each criterion might
only be identified in one or a few specific frames of the entire input sequence. In contrast to
our method’s fixed window, the annotators assign a single label to the whole sequence based
on specific frames they see during the annotation process. Thus, many frames in our input
will be redundant for criteria detection, while some hold relevant information for successful
identification. The challenge is to automatically focus on those frames during classifications,
similarly to what the annotators undergo when making a decision. Based on the success of
recent studies that apply attention modules to sequential signals , we use an attention-based
MIL model (Ilse et al., 2018; Sheng, 2020). Figure 3 illustrates the network architecture.
The input frames are processed using a ViT network to produce a feature representation
for each frame. The resulting features are then applied to an attention block that learns to
select the frames to focus on. Finally, the weights from the attention block are aggregated
along with the input features, and processed using a small MLP network that produces the
final predictions for each criterion. Figure 4 further emphasizes the importance of attention
in our approach (additional examples of the importance of attention are provided in the
appendix.). When focusing on the frames with the highest and lowest attention weights, it
is clear that the first provides the information needed to identify CVS criteria, while in the
latter, it is not possible to discern successfully which criteria were achieved.

All features-based models were trained using a single GPU for 100 epochs, with a batch
size of 16 samples and a learning rate of 0.01. We use Stochastic Gradient Descent, with a
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momentum of 0.9. A Sigmoid function was applied to each model output, and we used a
binary cross-entropy loss function.

Fixed features or end-to-end training. Using a features-based setup has many ben-
efits. It allows shorter training runtime, requires less computing power, and utilizes other
pre-trained models trained on related tasks. However, previous studies showed that fine-
tuning the backbone instead of using it only for feature extraction improves results signifi-
cantly (Neimark et al., 2021a). We explored this approach and trained the entire network in
Figure 3 in an end-to-end manner. Now, the inputs are the actual frames (images) instead
of feature representations. We kept the input window size the same and used one frame for
each second. Since end-to-end training also allows using image augmentations, we randomly
resize the shorter side of all frames to a [256, 320] scale and randomly crop all frames to
224 × 224. We initiate the model weights to a pre-trained model and finetune the entire
backbone. The end-to-end experiments were done using 4 GPUs, with a batch size of 4 and
a learning rate of 0.0012.

5. Results

To evaluate our approach, we use a mean unweighted accuracy, by calculating the un-
weighted accuracy for each criterion on the same test set and averaging them. All ablation
experiments, including architecture selection and hyperparameter tuning, were done using
the training and validation sets. The results reported in this section are all done on the
same test set, which was kept aside during the exploration process.

5.1. Model architecture experiments

We compared several architectures to find the optimal architecture for CVS criteria detec-
tion (Table 2). To allow a fair comparison between the different architectures, we trained
all models using the same set of fixed features. The attention MIL model outperformed the
others, with more than 1% increase in each criterion accuracy.

Table 2: A comparison between different architectures for CVS criteria detection. We com-
pared the unweighted accuracy of each criterion and the mean value of all criteria.

Clean Triangle Gallbladder Separation Two Structures Mean
MLP 83.28% 80.19% 75.78% 79.75%
LSTM (mean agg.) 81.07% 81.02% 78.20% 80.10%
LSTM (take last agg.) 83.06% 80.80% 78.39% 80.75%
Attention MIL 84.64% 82.23% 79.47% 82.11%

5.2. Multi-label vs. single-label classification

We examine two approaches for CVS criteria detection. First, a multi-label classification
setup that combines all three criteria into a single model (i.e., a single 30-frame sequence
is labeled with all three criteria labels). Second, a single-label classification setup for each
criterion separately (i.e., three different models are trained, and the 30-frame sequence is
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labeled only with one criterion value). We trained the MIL model in both ways to assess
the contributions of multi-label training (Table 3). When trained separately, we replaced
the Sigmoid function with a Softmax one. The results implies that the whole is greater
than the sum of its parts. Multi-label classification outperforms separate models results
and produces better accuracy.

Table 3: Multi-label classification vs. single-label comparison. Models were trained simi-
larly, other than replacing the end classification function from Sigmoid to Softmax.
We report the unweighted accuracy of each criterion and the mean value of three
criteria together.

Clean Triangle Gallbladder Separation Two Structures Mean

Single-label 82.45% 81.83% 76.95% 80.41%
Multi-label 84.64% 82.23% 79.47% 82.11%

5.3. Fixed features vs. end-to-end training

Here, we compare between training from fixed features and training the entire network
end-to-end. In Table 4, we show that although there is a slight improvement (0.5%) in the
average performance, the criteria results were inconclusive. The results imply that end-
to-end training has good potential, but the gain was minor in this framework. We argue
that the relatively small dataset is insufficient to train a large network in an end-to-end
manner as transformer-based networks require large-scale datasets to generalize (Devlin
et al., 2018). More data will reveal the potential of such a setup even further.

Table 4: A comparison between fixed features and end-to-end training. We report the
unweighted accuracy of each criterion and the mean value of all three. The mean
unweighted accuracy improves when trained end-to-end.

Clean Triangle Gallbladder Separation Two Structures Mean

Fixed features 84.64% 82.23% 79.47% 82.11%
End-to-end 82.26% 83.41% 82.14% 82.60%

5.4. CVS detection

The end result we are interested in is evaluating the ability to detect whether CVS was
achieved or not, based on the different criteria predictions. Here, we assess the performance
of both fixed features and end-to-end training on detecting CVS by using only criteria
identification. We consider a CVS to be positive when all three criteria are positive. The
end-to-end architecture achieves better results in the final task of CVS detection compare
to the fixed features alternative (Table 5).
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Table 5: CVS detection results, using the criteria detection model to identify if CVS was
achieved or not. The end-to-end architecture performed better in every metric,
with a 4% gain in accuracy compared to the fixed features architecture.

Accuracy Unweighted Accuracy Specificity Sensitivity F1-score

Fixed features 80.1% 77.2% 82.4% 71.9% 61%
End-to-end 84.2% 80% 87.3% 72.7% 66.4%

5.5. Partial CVS detection

Although the common practice treats CVS as a binary decision, it seems counterintuitive
to consider partial CVS as if CVS wasn’t achieved at all. We believe that surgeons can still
gain valuable information even when not all criteria were achieved. For example, in high
complexity procedures, when it is sometimes hard to obtain a complete CVS, partial CVS
detection can still have a clinical value. We define partial CVS if at least two criteria exist
but not necessarily all three. The features-based model achieved an accuracy of 84.9%, with
unweighted accuracy of 88.1% and 82.3% for positive and negative classes, respectively.

6. Discussion

Previous studies demonstrated the advantages of implementing AI techniques in surgical-
related tasks. Building on top of their findings, we explore the challenging downstream
task of CVS detection. Our goal was to develop a robust method for CVS detection in a
production clinical setting - namely, fitted to operate in the OR tomorrow.

Our proposed approach applies attention-based multi instance learning and produces
high accuracy of 84.2% in detecting whether CVS was achieved or not. This result represents
a 10% increase in performance compared to other methods suggested before, by only using
the raw video as input.

Comparing the results of our approach with the one suggested by Mascagni et al. (2021)
and with the alternative baseline models explored in this work indicates that CVS detection
fits and can benefit from the formulation of a MIL problem. The MIL approach achieves
better performance and also simplifies the labeling process. Moreover, the attention-based
method enables illustrating the frames the model focused on during inference. This signifi-
cantly adds to our method’s interpretability, which is an important property for ML-based
applications in the healthcare domain.

Although the vast majority of surgeons agree on the importance of CVS in procedures
such as Laparoscopic Cholecystectomy, getting a group of experts to agree on CVS achieve-
ment and reach consensus is not trivial and leads to many biases in what is supposed to
be a methodic milestone. Future work will explore the usability of our method in real-time
scenarios and study its ability to provide immediate support for better decision-making.

An AI-based system for CVS detection, which learns from numerous surgical procedures
done by various surgeons, can set a solid and robust standardization for CVS achievement
and allow better supervision as part of the procedure routine, ultimately leading to better
surgical best practices and improved patients outcomes.
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Limitations The results presented in this work are limited to a single surgical procedure,
Laparoscopic Cholecystectomy. We choose to focus on this procedure since CVS is a well-
known method routinely performed in the OR. However, further research is needed in order
to validate our approach in other ectomy procedures, such as Laparoscopic Appendectomy.
The dataset described in this study was randomly divided into three subsets: training,
validation, and test. Other types of sets, leaving out all videos from a specific medical center,
surgeon, or technique, could shed more light on the method’s robustness. In addition, our
approach is based on first identifying the CVS location by using the segment before the
division of the cystic structures. Our analysis was done by using the manual annotations of
the surgical steps. Interesting future research should evaluate our approach in an end-to-end
manner, in which both the division step and the CVS are automatically detected.
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Appendix A. Demographics information

Table 6: Age group and sex distribution of the videos in our dataset.

Age Group #videos %

0-18 20 1
19-33 293 13
34-48 415 19
49-64 475 21
65-78 345 16
79- 144 6

untagged 531 24

Sex #videos %

Male 587 27
Female 1116 50

untagged 520 23

Appendix B. Additional examples of the importance of attention

Demonstrating the frames the MIL model focuses on for classification. A warmer color
represents a higher attention value. To create this figure, we subsampled the frames, taking
15 frames out of 30.

Figure 5: A positive CVS example A. Attention heatmap aligned with the corresponding
video frames. B. The frame with the highest attention value (frame 29). C. The
frame with the lowest attention value (frame 11).
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Figure 6: A positive CVS example A. Attention heatmap aligned with the corresponding
video frames. B. The frame with the highest attention value (frame 23). C. The
frame with the lowest attention value (frame 11).

Figure 7: A negative CVS example that shows uniform attention weights across all frames.
A. Attention heatmap aligned with the corresponding video frames. B. The
frame with the highest attention value (frame 27). C. The frame with the lowest
attention value (frame 11).
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Figure 8: A negative CVS example that shows uniform attention weights across all frames.
A. Attention heatmap aligned with the corresponding video frames. B. The
frame with the highest attention value (frame 25). C. The frame with the lowest
attention value (frame 7).

Figure 9: A negative CVS example A. Attention heatmap aligned with the corresponding
video frames. B. The frame with the highest attention value (frame 29). C. The
frame with the lowest attention value (frame 1).
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