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Abstract

Medical events of interest, such as mortality, often happen at a low rate in electronic
medical records, as most admitted patients survive. Training models with this imbalance
rate (class density discrepancy) may lead to suboptimal prediction. Traditionally this
problem is addressed through ad-hoc methods such as resampling or reweighting but per-
formance in many cases is still limited. We propose a framework for training models for
this imbalance issue: 1) we first decouple the feature extraction and classification process,
adjusting training batches separately for each component to mitigate bias caused by class
density discrepancy; 2) we train the network with both a density-aware loss and a learn-
able cost matrix for misclassifications. We demonstrate our model’s improved performance
in real-world medical datasets (TOPCAT and MIMIC-III) to show improved AUC-ROC,
AUC-PRC, Brier Skill Score compared with the baselines in the domain.

1. Introduction

Machine learning-based medical risk prediction models continue to grow in popularity Zhang
et al. (2018b); Rajkomar et al. (2018); Miotto et al. (2016). However, the performance
of these models is often biased in evaluation by commonly reported metrics (such as area
under the curve of the receiver operating characteristic: AUC-ROC), often reporting overly-
optimistic findings as a result of the imbalance between those that observe medical adverse
events and those that do not Swets (1979); Lobo et al. (2008); Cook (2007); Huang et al.
(2021). The adverse event of interest is often in the minority class Li et al. (2010). For
example, in mortality prediction, patients with higher risk represent a smaller fraction
in the cohort compared to most of the people who survive. Naively applying machine
learning models may render dissatisfaction: the outcome of interest can be extremely costly,
either through unnecessary medical intervention (type 1 error) or misdiagnosis (type 2
error). Furthermore, it is important not only to rank expired patients higher than survived
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patients w.r.t. probability output (e.g. AUC-ROC), but also the probability output is more
calibrated Park and Ho (2020).

While methods to tackle this imbalance issue via resampling or reweighting methods
constitute a popular approach Wang et al. (2020); Babar and Ade (2016), their applica-
tions in the context of medical data are often heuristic (or case by case) in nature. First,
these techniques may give readjusted importance to the smaller class, but the weighting
ratio remains ad-hoc from dataset to dataset, therefore, manual tuning might not be ideal.
Second, apart from inter-class density discrepancy, one unique aspect of medical data is
that even in the same risk group (same label), the patients may have different underlying
comorbidities or risk factor characteristics that arrive at potentially high risk for various
reasons, rendering intra-class heterogeneity Huo et al. (2019). This heterogeneity requires
models to have a personalized training regime to distinguish the nuanced differences Huo
et al. (2021), to address the imbalance in a standardized/automated fashion. Rather than
treating imbalanced densities as a problem, exploiting this information in training may
enhance performance Ali et al. (2013).

We propose a framework to address class imbalance density and make use of this imbal-
ance to render density-aware training for improved risk prediction performance. First, we
decouple the training of representation learning and classification. Traditionally, represen-
tation learning and classification are trained jointly Kang et al. (2019), but by decoupling,
class-specific features are extracted and class-specific predictions made, removing a source
of bias for the learned classifier Zhou et al. (2020). Second, the density differences are
important to learn, not eliminate, when modeling. Patients with lower risk (majority) are
often lower risk because they do not contain any of the common risk factors (e.g. lack
of hypertension, diabetes, prior myocardial infarction), and hence, form a dense cluster.
However, patients with higher risk (minority) may arrive at this high risk from different
factors (e.g. renal failure versus respiratory distress), thus being scattered in the data space
Huo et al. (2021). Our approach is density-aware, by avoiding re-sampling or re-weighing
pre-processing steps, and the decoupling approach improves risk prediction performance.
We demonstrate this approach in two different medical data scenarios: a randomized clini-
cal trial dataset and an electronic health record (observational) dataset. We show that our
method can achieve high predictive performance in these imbalanced medical datasets (im-
balance ratio can range from 7 ∼ 10) and perhaps surprisingly it can also achieve superior
calibration than the baselines without an extra set of calibration data.

Generalizable Insights about Machine Learning in the Context of Healthcare
As sophisticated models for increasingly large medical datasets are developed and promoted,
evaluation of the predicted outcomes, through the use of an appropriate set of metrics
is necessary. Medical data often contains low event rates for the major adverse events
of interest. The primary measures of their performance, either threshold specific-based
classification techniques, which may not properly account for the different costs of Type
I and Type II errors, or the ability of the model to discriminate those at risk and those
not, through the AUC-ROC, become overconfident in telling clinicians using the model who
is not at risk. By leveraging the imbalance in the classes modeled, we are able to more
accurately estimate those at risk, by more accurately identifying driving risk factors in the
groups independently. As a result, this allows us to more concretely evaluate why they
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individuals are at risk (rather than simply being not at low-risk), and provide for better
model calibration for medical decision making - through probabilistic interpretation of an
occurrence in a frequentist perspective.

2. Related Work

Supervised learning methods on imbalance dataset tasks often re-balance data via re-
sampling, such as oversampling Pouyanfar et al. (2018), undersampling He and Garcia
(2009) classes. Others use synthetic samples to account for imbalance, where new samples
are generated from perturbations of old samples Chawla et al. (2002); Zhang et al. (2018a).
Another common approach is via re-weighting, which re-assigns training weights for each
class based on criteria such as number of instances of each class Huang et al. (2019), effec-
tive numbers Cui et al. (2019) or the distance between loss Cao et al. (2019). However it
is not clear the clinical utility of these methods since they were developed in non-medical
datasets.

Medical models often focus on risk of adverse event estimation, which intrinsically carries
data imbalance. Re-sampling has been widely applied Chawla et al. (2002); Bhattacharya
et al. (2017). Cost-sensitive training is also applied, for example on Intensive Care Unit
(ICU) data Rahman and Davis (2013). Hybrid approaches, which combine re-sampling and
cost-sensitive training have also been applied Li et al. (2010). These methods all are based
upon the ad hoc tuning, weighting, or re-sampling to address imbalance, but do not learn
from the imbalance information itself.

Furthermore, the imbalance issue in medical dataset not only affects the prediction, but
also calibration Park and Ho (2020). The currently used metrics in medical modeling are
usually not geared towards calibration and the metrics most widely used, such as AUC-ROC
is susceptible to imbalance ratio Huang et al. (2021). The modern-day neural networks have
achieved astonishing accuracy but studies have shown most methods are getting less and
less calibrated Guo et al. (2017). Therefore we will demonstrate in our model the calibration
is an extra contribution on top of handling imbalance prediction

3. Methods

In this section, we introduce our framework. The approach first separates the training data
to different risk groups. Then, it uses a density-aware loss function to take into account the
data density difference between majority class and minority class. Finally, it uses a learnable
cost matrix to personalize misclassification. We stress that our framework is a training
regime that can apply to different backbones (e.g. different neural network architectures)
and we will later show in experiments this framework being used on real-world tabular as
well as time-series medical data. The overall pipeline is shown in Fig 1.

3.1. Decoupling training for imbalance classes

In neural networks, we can coarsely define the last layer (or last few layers) (Zhou et al.,
2020) as the output classifier, since the output is used to determine the class of one specific
instance. The previous layers of the network architecture can be deemed as the feature
extractors or backbone. Traditionally these two parts are trained jointly and the distinctions
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Figure 1: Overall pipeline. The original medical dataset is sampled with two distributions,
one balanced and one imbalanced (default) batch. Both of the batches will go
through the backbone but the classifiers will utilize different batches to optimize
the density-aware loss, rendering personalized decision boundaries for different
classes.

between them are ill-defined (Kang et al., 2019). However, Zhou et al. (2020) showed that
the classifier portion of the network is more susceptible to data imbalance, whereas the
feature extractor is not, during training. Thus, we decouple training of the feature extractor
and classifier.

Formally, let I = {Ii} be a set of inputs, and Y = {yi} be the set of corresponding
labels. For a typical objective function, we write:

L =
1

N

|C|∑
c=1

|Nc|∑
i=1

l(h(Ici), yci), (1)

where l(·) is the loss function and h(·) is our model. |C| signifies the number of total classes
and |Nc| the number of instances in one specific class. In an imbalance setting, the larger
class with more training instances |Nc| will dominate the loss and thus make the model
biased. A naive way to tackle this issue is to adjust the sampling rate for the smaller class.
For example, a class-balanced sampling (CBS) is proposed (Huang et al., 2016), where the
instances from each class are sampled with equal probability so that the big class would not
dominate the loss calculation and hence the density discrepancy will have much less effect.
However, the CBS strategy will likely induce the ill-fitting problem because either the big
class is under-sampled, inducing loss of information or small class is over-sampled, inducing
over-fitting (Yang and Xu, 2020). We propose that for a well-trained neural network, a set
of abundant and diverse training instances is required, so that the model can generalize well
in the testing set. A method is required to make use of the rich information in the big class
but to ensure the smaller class is well represented as well.

Inspired by Zhang et al. (2019), we are proposing a solution to use both class-balanced
sampling and regular random sampling, where the first would sample each instance to make
sure each class has equal probability and the latter one samples each instance with equal
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probability. The function can be defined:

pj =
nq
j∑|C|

c=1 n
q
c

, (2)

where pj indicates the probability of sampling a data point from class j and the range
for q ∈ [0, 1] and |C| is the number of classes. The regular random sampling entails the
q = 1, meaning the probability will be proportional to the cardinality of the class j. The
class-balanced sampling would entail q = 0 which means pj = 1/|C|, and therefore each
class is balanced. These two sampling strategies will generate two sets of batches, with each
class’s density built in, and we will train the feature extractor with both batches while the
classifier will only train on the corresponding batch. In this way the rich information of
big class will be preserved and at the same time the balanced classifier, which is eventually
used for prediction during inference, will not be biased towards one class.

3.1.1. Density-aware outlier detection loss

To further make use of the inherent density information among the classes, we will introduce
the density-aware training. There have been many cost-sensitive methods proposed to
address the imbalance issue. One of the most popular ones is the focal loss (Lin et al., 2017).
This method focuses on the ‘difficult’ examples, which means the predicted probability of
the example is far away from the true label. Based on previous discussion, we can treat
the low risk patient as in-distribution data and high risk patients (with different underlying
factors) as out-of-distribution data, and use the outlier detection technique to optimize the
boundary (Huo et al., 2020).

By following this direction we propose a hinge loss based objective function. Hinge loss
itself is less susceptible to density discrepancy among classes because it aims to optimize
around support vectors, thus focusing the ‘difficult’ examples which are close to the decision
boundary. However the traditional ‘max-margin’ training using the hinge loss did not take
into account the class-wise density, which renders a non-personalized training. Our proposed
personalized training is through a density-aware margin optimization (Cao et al., 2019).
This Density-Aware Hinge (DAH) loss can be written as follows:

LDAH =
1

N

|C|∑
c

max(max
j ̸=c

{zj} − zc +∆c, 0)

where ∆c =
K

|Nc|1/4
, for c ∈ {1, ..., |C|},

(3)

where LDAH is the density-aware hinge loss, zj is the model j-th element in the output
vector, indicating the probability of this instance predicted to be j-th class, and zc is the
predicted output probability of the true class c. The form follows the traditional hinge loss,
except the density-aware component ∆c. The parameter K is a hyper-parameter, and |Nc|
is number of examples in class c. In Cao et al. (2019), the exponential in |Nc|1/4 is derived
by the trade-off of optimizing all the margins between classes, so that the imbalanced test
error can be smaller than a generalization error bound (Wei and Ma, 2019). That is,
γj ∝ |Nc|1/4, where γc is the margin in the hyper-plane for class c. Therefore we follow this
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Table 1: A typical cost matrix where the diagonal has zero cost, and CFN , CFP represents
false negative cost and false positive cost, respectively.

Cost Matrix Predicted as Positive Predicted as Negative

True Positive 0 CFN

True Negative CFP 0

tuning. The hyper-parameter K is usually tuned by normalizing the last hidden activation
and last fully-connected layer’s weight vectors’ ℓ2 norm to 1, as noted in Wang et al. (2018).

In practice, the hinge loss may pose difficulty for optimization due to its non-smoothness
(Luo et al., 2021). First we derive the softmax from the original form and thus a relaxed
form of hinge loss for smoothness is adopted to simulate the cross-entropy form:

LDAH =
1

N

|C|∑
c

− log σ(zc),

where σ(zc) =
exp(zc −∆c)

exp(zc −∆c) +
∑

j ̸=c exp(zj)
, and ∆c =

K

|Nc|1/4
, for c ∈ {1, ..., |C|}

(4)

The ‘max-margin’ form is relaxed to a softmax function in the cross-entropy-like optimiza-
tion. While some previous work (Liu et al., 2016; Wang et al., 2018) adopted similar ideas,
our proposed personalized margin ∆c can make use of the information in density discrepancy
itself for training.

3.1.2. Trainable cost matrix

For personalized training, we propose to equip the density-aware loss with a trainable cost
matrix. Traditionally the cost of training has been set static throughout the whole training
process (e.g. false positive cost and false negative cost in binary classification). The default
cost matrix can be seen as table 1, where the CFN , CFP were traditionally set to 1 (Note
that the cost matrix here can only be applied to binary prediction). However this implies
that the two types of cost are equal throughout the whole training (Roychoudhury et al.,
2017). But as we discussed before, the big class and small class would make the model
more biased towards one versus the other due to the density disparity. But we want to use
some mechanism to rebalance the training so that the model would be less biased. Thus
instead of treating the costs as a prior knowledge, we make them as trainable parameters
along with the model as well (Fernández et al., 2018, page. 66). In this way, the model
will dynamically learn the cost to minimize the loss function. For an input and target pair
(x, y), where the output of the model is z = h(x), the loss function with incorporation of
two costs under binary classification is proposed:

L((x, y);h(·)) =− y log σ(CFNzmax)− (1− y) log(1− σ(CFP zmax))

subject to CFN > 0, CFP > 0, CFN > θCFP
(5)

The zmax indicates the largest logit along the output vector. The constraints above ensure
that the two types of misclassification cost will always be positive (Roychoudhury et al.,
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Table 2: Summary of the datasets and the tasks
Dataset task #instances #features IR

TOPCAT
Mortality

1,767 86
7.92

hospitalization 1.71

MIMIC-III
Mortality

21,139 34
7.57

Phenotyping 10.32

2017) and due to the minority class is the prediction of interest (such as higher risk patients),
we penalize more in the event of false negatives verse false positives. Here, θ can be tuned
as a hyper-parameter.

In practice, when applying stochastic gradient descent (SGD), the parameters can only
be updated without constraints. Here we relax the constrained problem as an unconstrained
one, we thus rewrite:

CFN = θCFP +D, (6)

where D is a regularization term. Therefore we will only need to make sure CFP > 0 during
training. We propose to minimize the objective loss function in terms of logCFP instead of
CFP :

∂L((x, y);h(·))
∂ logCFP

= CFP
∂L((x, y);h(·))

∂CFP
, (7)

where the loss function can take the form as we defined above for density-aware training.
Note that there are generally two ways to handle the constraints for optimization: reparame-
terization to an unconstrained minimization problem or projected gradient (PG) (Amid and
Warmuth, 2020). PG is to perform unconstrained gradient updates, then project back onto
the feasible space after each update. PG directly solves the convex optimization problem,
but the intermediate iterates can sometimes lead to a possibly less stable or too aggressive
trajectory (Raskutti and Mukherjee, 2014). Ours is similar to reparameterization where
numerical stability is more warranted in this regard.

4. Experiments

4.1. Datasets

In our experiment, we test our proposed model on two real-world medical datasets which
include inherent imbalance issues and heterogeneous patients representations.

1) The first dataset is TOPCAT (Treatment of Preserved Cardiac Function Heart Failure
with an Aldosterone Antagonist). TOPCAT is a multi-center, international, randomized,
double-blind, placebo controlled trial sponsored by the U.S. National Heart, Lung, and
Blood Institute Bertram et al. (2014). TOPCAT collects patients from the United States,
Canada, Brazil, Argentina, Russia, and Georgia between 2006 and 2013. The outcomes of
interest were all-cause mortality and heart failure hospitalization through 3 years of follow-
up. The data includes demographic and clinical data available from patients in addition
to laboratory data, electrocardiography data, Kansas City Cardiomyopathy Questionnaire
(KCCQ) scores (physical limitation score, symptom stability score, symptom frequency
score, symptom burden score, total symptom score, self-efficacy score, quality of life score,
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social limitation score, overall summary score, and clinical summary score). The details of
the variables are listed in supplementary Table 8.

2) The second dataset is MIMIC-III (Medical Information Mart for Intensive Care).
MIMIC-III is one of the largest clinical datasets that has been made publicly available
Johnson et al. (2016). It contains multivariate time-series data from over 40,000 intensive
care unit (ICU) stays. The types of data range from static demographics such as gender
and age to rapidly changing measurements such as heart rate and arterial blood pressure.
The heterogeneity is one of the major challenges when analyzing this dataset, due to the
diverse patient health conditions, rapidly changing hazard ratio as well as the corresponding
treatments. We focus on using only the first 48 hours after ICU admission for the prediction
of patient mortality and phenotyping. The intuition is that for early risk prognosis and
phenotyping, the precaution procedure can be undertaken since the average ICU stay can be
up to 100 to 200 hours Johnson et al. (2016). We adopted the same data pre-processing steps
as in a set of benchmark models in MIMIC-III Harutyunyan et al. (2019)(i.e. imputation,
normalization, data masking, etc), where we used the same 17 clinical measurements and
their derivations to construct in total 34 time-series features.

A summary of the datasets with the imbalance ratio (IR) is shown in Table 2. We test
our model on three binary classifications (2 from TOPCAT, 1 from MIMIC-III) tasks and
a multi-class classification task (MIMIC-III) to demonstrate our model can work under a
variety of scenarios. Note that only the phenotyping task in MIMIC-III is a multi-class
multi-label scenario, so the imbalance ratio is calculated between the largest class and
smallest class. The listing of phenotype labels used is in supplementary Table 9, along with
their medical type to indicate this is a heterogeneous set of labels that have many underlying
driving factors. The model is not trained on a learnable cost matrix for phenotyping since
the false positive and false negative is for binary classification, therefore, we solely rely on
decoupling training and density aware loss.

4.2. Experimental Setup

For each of the datasets and tasks, we selected strong baselines from existing benchmarks.
1) Baselines for TOPCAT:

• RF Angraal et al. (2020): a Random Forest based method which is originally tested
on TOPCAT dataset

• U-RF Arafat et al. (2017): a balanced Random Forest that randomly under-samples
each boostrap sample to balance training

• R-MLP Babar and Ade (2016): a Multi-layer Perceptron (MLP) model that uses
reweighting in the training

For all the baseline with resampling or reweighting, we train the network on 80% of the data
and tune the hyper-parameters including the weighting ratio in 10% of the data, and test on
the rest 10%. For our model to have a strong neural work backbone, we construct a multi-
layer Perceptron model as our backbone. The construction of the backbone is similar to
R-MLP Babar and Ade (2016), training the neural network with 200 epochs, with learning
as 0.001 and batch size as 64. More specifically this is a 4-layer fully connected NN, the first
input layer is the same as number of features and each hidden layer has 28 neurons with
one residual skip connection block and output layer has 2 neuron which is later measured
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on cross-entropy loss. We have our model train with our proposed decoupling and density
aware loss, whereas R-MLP has under-sampling as their technique with some stochastic
measures.

2) Baselines for MIMIC-III:

• GRU-D Che et al. (2018): a Gated Recurrent Unit (GRU) based method where the
model has a trainable decay component

• bi-LSTMHarutyunyan et al. (2019): a bi-directional Long Short-termMemory (LSTM)
based method with channel-wise feature fusion

• flexEHR Deasy et al. (2019): a GRU based method that uses word embedding tech-
nique to extract features.

• GRU-U Wang et al. (2020): a GRU based method that utilizes both trainable decay
and undersampling technique for imbalance handling

• c-LSTM Harutyunyan et al. (2019): a channel-wise LSTM that process each variable
independently in the first layer then fuse them in the second layer

• Deep Supervision Lipton et al. (2015): an RNN based model that uses target replica-
tion for the supervision of LSTM in each time stamp, and with changing loss function
the model needed to predict replicated target variables along with outcome

For the MIMIC-III dataset, we follow the same 80/10/10 splits. And we construct our
backbone same as flexEHR Deasy et al. (2019) which is a GRU based method. We trained
the models with 50 epochs with an early stopping threshold of 5 epochs with no increase in
AUC-ROC on the validation set. The batch size is 128 and Adam optimizer is used with
learning rate 0.001.

In addition to the traditional way of measuring probabilistic output of the medical
models, i.e. area under the receiver operating curve (AUC-ROC), we argue that we need
to incorporate the metrics that can represent the difficulties induced by imbalanced class
densities. First AUC-ROC only measures the true positives (TP) and false positive (FP)
relationship, which can present an overly optimistic view of an algorithm’s performance if
there is large skew in the class distribution Davis and Goadrich (2006). On the other hand,
area under precision-recall curve (AUC-PRC) can provide a more reliable interpretation
under imbalance, due to the fact that they evaluate the fraction of true positives among
positive predictions Saito and Rehmsmeier (2015), and the precision-recall relationship will
change when the test set’s imbalance ratio changes, thus providing more sensitive evaluation
Davis and Goadrich (2006). Furthermore, in a medical model, the conventional way of
measuring the model is through Brier score Brier et al. (1950), which takes into consideration
the calibration of the model. However, the Brier score is also susceptible to imbalance ratio
Fernández et al. (2018). We propose to use Brier Skill Score (BSS) Fernández et al. (2018),
where the model takes the calculated Brier score and compare it to a reference point, i.e.
a scaled Brier score by its maximum score under a non-informative model Steyerberg et al.
(2010), to show the improvement:

BSS = 1− BS

BSmax
(8)

We chose the reference BSmax to the the prevalence predictor to output the probability
based on the imbalance ratio, i.e. BSmax = 1

N

∑N
t=1(ft − ot)

2 and prediction ft is replaced
by the event rate and ot is the outcome label of interest Center (2005).
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Table 3: Results for TOPCAT dataset
Task Methods AUC-ROC AUC-PRC BSS

Mortality

RF Angraal et al. (2020) 0.723 ± 0.003 0.512 ± 0.001 -0.357 ± 0.002
U-RF Arafat et al. (2017) 0.752 ± 0.002 0.532 ± 0.002 -0.103 ± 0.003
R-MLP Babar and Ade (2016) 0.736 ± 0.001 0.523 ± 0.005 -0.067 ± 0.003
Ours 0.794 ± 0.002 0.583 ± 0.002 0.166 ± 0.003

Hospitalization

RF Angraal et al. (2020) 0.763 ± 0.005 0.657 ± 0.006 -0.008 ± 0.0004
U-RF Arafat et al. (2017) 0.771 ± 0.005 0.674 ± 0.006 -0.005 ± 0.003
R-MLP Babar and Ade (2016) 0.789 ± 0.003 0.661 ± 0.005 -0.012 ± 0.001
Ours 0.788 ± 0.007 0.711 ± 0.003 0.132 ± 0.002

4.3. Results

First, for the TOPCAT dataset in Table 3, we have compared our model with the baselines
and we repeated the experiments in a 5-fold cross-validation scenario and compute the
95% confidence intervals. In the mortality prediction task, we are performing better on
three metrics, especially in the imbalance oriented metric, AUC-PRC and BSS. The margin
improved on AUC-PRC is obvious, showing the model is sensitive on finding a balance
between precision and recall, both of which measure the performance of the class of interest
(minority class where the patients eventually expired). Furthermore, the baselines model all
have negative BSS scores, showing that in this mortality prediction scenario, the imbalance
can pose a big challenge for a model to calibrate. In fact negative BSS is not uncommon
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Table 4: Results for MIMIC-III dataset
Task Methods AUC-ROC AUC-PRC BSS

Mortality

GRU-D Che et al. (2018) 0.852 ± 0.002 - -
bi-LSTM Harutyunyan et al. (2019) 0.862 ± 0.004 0.515 ± 0.001 -0.801 ± 0.002
flexEHR Deasy et al. (2019) 0.878 ± 0.004 0.513 ± 0.002 -1.105 ± 0.003
GRU-U Wang et al. (2020) 0.876 ± 0.006 0.532 ± 0.002 -
Ours 0.892 ± 0.001 0.586± 0.004 0.240 ± 0.003

Task Methods Macro AUC-ROC Micro AUC-ROC

Phenotyping
c-LSTM Harutyunyan et al. (2019) 0.708 ± 0.0023 0.725 ± 0.0053
bi-LSTM Harutyunyan et al. (2019) 0.770 ± 0.0081 0.791 ± 0.0048

(Multi-class, flexEHR Deasy et al. (2019) 0.755 ± 0.0052 0.814 ± 0.0071
Multi-label) Deep Supervision Lipton et al. (2015) 0.679 ± 0.0074 0.713 ± 0.0061

Ours 0.771 ± 0.0061 0.821 ± 0.0049

in existing work Weigel et al. (2007); Leadbetter et al. (2022), showing that many modern-
day models can have high predictive power but are poor at calibration, as noted in Guo
et al. (2017). We will later show that by comparing against with some post hoc calibration
technique on the baselines, our model can still stand out on both prediction and calibration.
Next for hospitalization prediction, our model also outperforms the baselines in two of the
key metrics. The AUC-ROC is second to the best, after the same model backbone trained
on resampling. We suspect this is due to the fact that the IR score is lower in this task,
rendering less focus on difficulty induced by imbalance and resampling is designed to handle
the example-wise difficulty. However as we discussed before, the AUC-ROC is not sensitive
to class distribution so the majority class’s performance can lead to the model having an
overly optimistic evaluation. We compared the AUC-ROC plot and AUC-PRC plot of our
model and the R-MLP baseline in Figure 2 and 3. As can be seen, the AUC-ROC plots
of the two models are similar, however, the AUC-PRC plot shows on the upper region of
the curve the baseline is performing rather unstably but our model gives a more smooth
curve. In Saito and Rehmsmeier (2015), this region is defined as early retrieval region,
where is usually used to measure in information retrieval application for when results of
interest account for a small portion of all the corpus Hilden (1991); Truchon and Bayly
(2007) (what is the model precision when recall rate is low). We can conclude our model
has better performance on AUC-PRC is due to the better part on early retrieval where it
can better handle the imbalance for the class of interest.

For the MIMIC-III dataset in Table 4, we also compared our model with the baselines
(Note some metrics are empty due to the original model did not report those metrics and
there is no publicly available code to replicate the results). First, for mortality prediction,
our model is again better across the board among all the three metrics, especially on BSS
evaluation on the model. It is perhaps surprising that traditional medical models were
rarely optimized w.r.t. calibration, which however is an important metric for medicine
Van Calster et al. (2019). For the phenotyping task, due to multi-class, multi-label scenario,
the previously existing methods did not adopt AUC-PRC (precision, recall are used mostly
in binary classification) or BSS (Brier score is used in a 1-0 probabilistic output model
for calibration purposes.) So we instead use macro AUC-ROC and micro AUC-ROC for
model performance comparison. From the table, we can see our model is better than all
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Table 5: Calibration study for TOPCAT dataset
Methods AUC-ROC AUC-PRC BSS
RF Angraal et al. (2020) 0.723 ± 0.003 0.512 ± 0.001 -0.357 ± 0.002

w/ Califorest Park and Ho (2020) 0.734 ± 0.003 0.498 ± 0.001 -0.052 ± 0.002
R-MLP Babar and Ade (2016) 0.736 ± 0.001 0.523 ± 0.005 -0.067 ± 0.003
w/ Temperature scaling Guo et al. (2017) 0.744 ± 0.003 0.518 ± 0.001 0.102 ± 0.002
Ours 0.794 ± 0.002 0.583 ± 0.002 0.166 ± 0.003

the baselines on these two metrics, showing the multi-class multi-label imbalance scenario
can also be handled by our framework.

In Guo et al. (2017), the authors argued the confidence calibration, being the prob-
lem of predicting probability estimates representative of the true correctness likelihood, is
important for classification models in many applications, but modern neural networks are
becoming increasingly lacking in this respect. They proposed a temperature scaling method
to calibrate the model which is a variant of Platt scaling Platt et al. (1999). The method is
to use sigmoid function as the transformation for model’s output into proper posterior prob-
ability. Our method of distribution-aware loss resembles the temperature scaling in that we
have a component in the softmax to ‘soften’ the probability similarly to the temperature
variable. Furthermore the component is label distribution aware, making it particularly
suitable for calibration in an imbalanced setting. We aim to compare against this method.
Furthermore, the tree-based methods all performed badly especially in terms of calibration.
We will use a calibration specifically designed for tree models, i.e. Califorest Park and Ho
(2020), where the authors used Out-of-Bag (OOB) samples as the calibration set and each
individual prediction is used to calculate the weights for the samples. We will use these
two methods as the post hoc calibration method (i.e. the model is calibrated after finished
training, this will theoretically give them more advantage since our model does not use any
post hoc calibration) for the tree-based model and neural networks to study if the BSS
metric for them can be increased to positive. We did our experiment on TOPCAT dataset
and the task is hospital mortality prediction. The results are shown in Table 5. As we can
see we have equipped the tree model, i.e. Random Forest, the Califorest and R-MLP the
Temperature scaling to calibrate after the training, which renders improvement on BSS for
both of the cases. The RF has not been able to push BSS to positive but the improvement
is more substantial. The temperature scaling has pushed the neural network to have pos-
tive BSS, meaning the calibration is better than a model that outputs the prevalence of
the events. However we should note that both of the post hoc calibration techniques have
lowered the AUC-PRC, meaning the predictive power is compromised for the calibration.
In our model we can observe high predictive power as well as calibration. We postulate
that the decoupling training indeed separates the bias from imbalanced data to the classi-
fier while the feature extractor maintains the power of absorbing all information. The label
distribution-aware loss, acting similarly to the Temperature scaling (where the scaling factor
is inherently tuned during training with our modified softmax formulation), is calibrating
the balanced classifier without sacrifice of predictive power. To this end, without using the
extra calibration dataset is not an issue anymore. We have tried to test the Temperature
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Figure 4: Density plot of survived/expired patients

Table 6: Ablation study for TOPCAT dataset
Task Methods AUC-ROC AUC-PRC BSS

Mortality

MLP 0.736 ± 0.004 0.523 ± 0.002 -0.067 ± 0.001
MLP-TrainableCost 0.770 ± 0.003 0.541 ± 0.002 -0.188 ± 0.001
MLP-decoupling 0.778 ± 0.002 0.569 ± 0.005 -0.480 ± 0.004
MLP-FL 0.782 ± 0.004 0.541 ± 0.003 -0.080 ± 0.004
MLP-DAH 0.779 ± 0.001 0.549 ± 0.005 0.111 ± 0.004
MLP-Ours 0.798 ± 0.002 0.589 ± 0.001 0.178 ± 0.002

scaling on our model but we did not observe improvement on calibration but the AUC-ROC
and AUC-PRC are slightly compromised as well.

Furthermore, as a proof-of-concept, we are particularly interested if our assumption
holds, i.e. the patients who survived would be similar to each other where the patients who
expire would be more dissimilar. We have extracted the embedded vector from our model
whose backbone is based on Deasy et al. (2019), carrying 256-dimension last hidden layer
(before classifier) on the mortality prediction task in MIMIC-III. And then we apply t-SNE
Linderman et al. (2019) which is a visualization algorithm to embed the data into 2 dimen-
sions. We plot the embedding along with their labels to show the density differences, shown
in Figure 4. As we can see, the survived patients account for a small and condensed space
where the patients who expired would form different peaks, indicating different local clus-
ters (e.g. diseases/phenotypes). This can prove the assumption of the density discrepancy
as training information can be truly captured.

4.3.1. Ablation Study

We have a few components in our model such as decoupling training and density aware loss
function. We are interested to know what makes the model improve and how can we dissect
the model to demonstrate. We aim to study how does the decoupling help the prediction,
and specifically what has the model learned. Also by comparing density aware loss with
vanilla version (traditional cross-entropy loss) as well as another advanced version of loss
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Table 7: Ablation study for MIMIC-III dataset
Task Methods AUC-ROC AUC-PRC BSS

Mortality

GRU 0.871 ± 0.004 0.514 ± 0.003 -1.116 ± 0.005
GRU-TrainableCost 0.879 ± 0.001 0.520 ± 0.002 -1.108 ± 0.005
GRU-decoupling 0.892 ± 0.003 0.577 ± 0.002 -0.909 ± 0.002
GRU-FL 0.875 ± 0.008 0.523± 0.007 -0.112 ± 0.007
GRU-DAH 0.876 ± 0.003 0.534 ± 0.005 0.078 ± 0.003
GRU-Ours 0.892± 0.001 0.586± 0.004 0.240± 0.004

function (focal loss Lin et al. (2017)), we conduct a thorough comparison between them. In
MIMIC, we have an existing strong backbone that we can apply our techniques on Deasy
et al. (2019), which is based on a GRU model. In the TOPCAT dataset, to construct a
strong backbone, we make use of the same MLP architecture as in R-MLP Babar and Ade
(2016) with a residual skip connection block He et al. (2016) that can be further decoupled
or trained with different loss functions. We listed our ablation study in Table 6 and 7 in
these two datasets both for mortality prediction.

First, for the TOPCAT dataset, we can see that when fully applying our framework on
the backbone, the model would outperform all other variants in Table 6. Another finding
is that the decoupling training is improving the AUC-PRC in a larger margin than others,
suggesting that this way of training can largely avoid the imbalance issue by through a
more distribution-aware metric. However the shortcoming of decoupling alone is that it
is bad at calibration, where it is among the worst BSS metric in the methods. Second,
when applying density aware loss alone, we can see the model can be better calibrated
(i.e. positive BSS), which is usually an important aspect of a medical model Angraal et al.
(2020) because the output probability can be evaluated as the risk score for further ranking.
For the MIMIC-III dataset in Table 7, we can see that the decoupling itself can improve
significantly and this method alone can give good AUC-ROC (tied as best). We are then
interested to know how does this single trick compare to the full framework on improving
BSS in terms of calibration. The comparison is in Fig 5 where we can see our model’s
calibration is closer to diagonal, rendering a more natural ‘S’ shape Fellowship and Grant
(2008), where the baseline GRU-decoupling has poor calibrated range when the output
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Figure 5: Calibration plot comparison
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probability is in mid/high range (which is the label of high-risk patients). This is showing
the model is overshooting for this range of probability, likely due to an density discrepancy,
because the model would assign overconfident probability to the patients in higher risk,
requiring a density aware training. The over-confident prediction is prevalent in modern-
day neural networks, where the mean predicted probability is higher than the fraction of
positive class in a certain bin as noted in Guo et al. (2017). However, when equipped with
the full framework, the performance of our model can increase significantly, especially on
Brier Skill Score for calibration and rendering the plot to be closer to the diagonal (perfect
calibration).

4.3.2. Parameter study

Since we have incorporated a trainable cost matrix, and we are interested in how does the
parameter θ in Eq. 5 change the performance in the model. We have search on a space of
{1, 5, 10, 25, 50, 100} for θ, following Roychoudhury et al. (2017). On the TOPCAT dataset
for mortality prediction we conduct the experiments and show it in Figure 6. We can
see that AUC-ROC peaks at θ = 5 while AUC-PRC can be θ = 10. However, given the
confidence interval’s overlap, the significance for choosing θ = 10 over θ = 5 for AUC-PRC
can be statistically minimal, therefore θ = 5 is chosen.

Figure 6: Tuning of θ for AUC-ROC and AUC-PRC

5. Conclusion

We proposed a framework to treat class imbalance, which is prevalent in medical datasets.
The introduced framework not only addresses imbalanced class densities but also makes use
of the density discrepancy to train a model. The decoupled training method alleviated bias
caused by the majority class, by ensuring faithful representation of the minority class. Fur-
ther, we used a density-aware loss to personalize training of each class, specifically: learning
that lower-risk patients arrive at low risk by calculation of the similar factors, forming a
dense cluster in the data space, but high-risk patients are dissimilar, driving them to differ-
ent regions of the data space. We demonstrated that our model, trained with this decoupling
framework along with density-aware loss and learnable cost matrix, outperformed baseline
approaches when applied to risk prediction in medical datasets. Furthermore, through
experiments we find that traditional models were poorly calibrated, calling for more com-
prehensive evaluation, especially geared towards imbalance issues. Our framework overall
has shown to be better at prediction as well as calibration, which can be of great use in the
medical domain.
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Appendix A.

The table of used variables for TOPCAT dataset along with their definitions

Variable Names Definition
age entry.x Age entering the study
GENDER.x Gender of the subject
RACE WHITE White or Caucasian
RACE BLACK Race: Black
RACE ASIAN Race: Asian
RACE OTHER Race: Other
ETHNICITY Subject of Hispanic, Latino, or Spanish origin?
DYSP CUR Dyspnea: Present at screening?
DYSP YR Dyspnea: experienced in past year?
ORT CUR Orthopnea: Present at screening?
ORT YR Orthopnea: experienced in past year?
DOE CUR Dyspnea on exertion: Present at screening?
DOE YR Dyspnea on exertion: experienced in past year?
RALES CUR Rales present at screening?
RALES YR Rales: experienced in past year?
JVP CUR JVP: Present at screening?
JVP YR JVP: experienced in past year?
EDEMA CUR Edema: Present at screening?
EDEMA YR Edema: experienced in past year?
EF Ejection Fraction
CHF HOSP Previous hospitalization for CHF
chfdc dt3 Time Between randomization and Hospitalization for Cardiac Heart

Failure (years)
MI Previous myocardial infarction
STROKE Previous Stroke
CABG Previous Coronary artery bypass graft surgery
PCI Previous Percutaneous Coronary Revascularization
ANGINA Angina Pectoris
COPD Chronic Obstructive Pulmonary Disease
ASTHMA Asthma
HTN Hypertension
PAD Peripheral Arterial Disease
DYSLIPID Dyslipidemia
ICD Implanted cardioverter defibrillator
PACEMAKER Pacemaker implanted
AFIB Atrial fibrillation
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DM Diabetes Mellitus
treat sp cat Treat for diabetes mellitus: other: specify (categorical variable)
SMOKE EVER Has subject ever been a smoker
QUIT YRS How many years since quitting
alcohol4 cat How many Drinks do you consume per week (0/1-5/5-10/11+)
HEAVY WK Exercise: Heavy
MED WK Exercise: Medium
LIGHT WK Exercise: Light
LIGHT MIN Exercise: Light: Minutes
mets per week Activity Level (mets per week)
cooking salt score Cooking Salt Score
nyha class cat NYHA class 3&4 vs 1&2
HR.x Heart rate
SBP Systolic blood pressure
DBP Diastolic blood pressure
gfr Glomerular Filtration Rate
NA mmolL Sodium: Result (mmol/L)
K mmolL Potassium: Result (mmol/L)
CL mmolL Chloride: Result (mmol/L)
CO2 mmolL CO2: Result (mmol/L)
BUN mgdL Blood Urea Nitrogen: Result (mg/dL)
GLUCOSE mgdL Glucose: Result (mg/dL)
GLUCOSE INDICATOR Whether the glucose measured was fasting or random
WBC k/µL WBC count: Result (k/uL)
HB gdL Hemoglobin: Result (g/dL)
PLT k/µL Platelet Count: Result (k/uL)
ALT UL Alanine Aminotransferase: Results (U/L)
ALP UL Alkaline Phosphatase: Results (U/L)
AST UL Aspartate Aminotransferase: Results (U/L)
TBILI mgdL Total Bilirubin: Results (mg/dL)
ALB gdL Albumin: Results (g/dL)
urine val mgg Urine Microalbumin/Creatinine Ratio: Result (mg/g)
QRS DUR QRS Duration
ECG AFIB Atrial fibrillation/Flutter
ECG BBB2 Bundle Branch Block - Yes/No indicator
ECG VPR Ventricular paced rhythm
ECG Q Pathological Q waves
ECG LVH Left ventricular hypertrophy
drug.x Treatment Group (Spironolactone or Placebo)
BMI Body Mass Index
cigpacksperday Number of cigarettes per day
phys limit score KCCQ: Physical Limitation score
symp stab score KCCQ: Symptom Stability score
symp freq score KCCQ: Symptom Frequency score
symp bur score KCCQ: Symptom Burden score
tot symp score KCCQ: Total Symptom score
self eff score KCCQ: Self-Efficacy score
qol score KCCQ: Quality of Life score
soc limit score KCCQ: Social Limitation score
overall sum score KCCQ: Overall Summary score
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clin sum score KCCQ: Clinical Summary score
Table 8: List of Candidate Variables used for Predicting Mortality

Table 9: Phenotype labels for MIMIC-III dataset

Phenotype type

Acute and unspecified renal failure acute

Essential hypertension chronic

Acute cerebrovascular disease acute

Fluid and electrolyte disorders acute

Acute myocardial infarction acute

Gastrointestinal hemorrhage acute

Respiratory failure; insufficiency; arrest acute

Hypertension with complications chronic

Chronic kidney disease chronic

Other liver diseases mixed

Chronic obstructive pulmonary disease chronic

Other lower respiratory disease acute

Complications of surgical/medical care acute

Other upper respiratory disease acute

Pleurisy; pneumothorax; pulmonary collapse acute

Conduction disorders mixed

Congestive heart failure; nonhypertensive mixed

Pneumonia acute

Coronary atherosclerosis and related chronic

Cardiac dysrhythmias mixed

Diabetes mellitus with complications mixed

Diabetes mellitus without complication chronic

Disorders of lipid metabolism chronic

Septicemia (except in labor) acute

Shock acute
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